Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |
Stages (3eme / seconde)
Stages de découverte (classe de 3eme, 2nde) Voir https://www.math.univ-paris-diderot.fr/diffusion/index

Chiffres-clé

Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles

 

Chiffres mars 2019

 

GT CalVa R MCCANN

Lundi 9 janvier 2017

Robert MC CANN (University of Toronto Bahen Centre)

Free Discontinuities in Optimal Transport

Abstract : Optimal maps in $R^n$ to disconnected targets necessarily contain discontinuities (i.e. tears). But how smooth are these tears ? When the target components are suitably separated by hyperplanes, non-smooth versions of the implicit function theorem can be developed which show the tears are hypersurfaces given as differences of convex functions --- DC for short. If in addition the targets are convex the tears are actually $C^1,\alpha$. Similarly, under suitable affine independence assumptions, singularities of multiplicity $k$ lie on DC rectifiable submanifolds of dimension $n+1-k$. These are stable with respect to $W_\infty$ perturbations of the target measure. Moreover, there is at most one singularity of multiplicity $n$. This represents joint work with Jun Kitagawa.