Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |


Chiffres clefs

189 personnes travaillent au LJLL

86 permanents

80 chercheurs et enseignants-chercheurs permanents

6 ingénieurs, techniciens et personnels administratifs

103 personnels non permanents

74 doctorants

15 post-doc et ATER

14 émérites et collaborateurs bénévoles


Chiffres janvier 2022


Davide Barilari

Lundi 5 mars 2018

Davide Barilari (IMJ, Université Paris-Diderot)

Geometric interpolation inequalities : from Riemannian to sub-Riemannian geometry.

Résumé :
In a seminal paper of Cordero-Erasquin-McCann-Schmuckenschläger, the authors extends using optimal transport techniques classical functional and geometrical interpolation inequalities from the Euclidean to the Riemannian setting. In particular these results imply a "geodesic" version of the celebrated Brunn-Minkovski inequality.

Sub-Riemannian manifolds can be described as limits of Riemannian ones with Ricci going to -\infty and the generalisation of the above results is not possible using classical theory of Riemannian curvature bounds.

In this talk, we discuss how, under generic assumptions, these structures support interpolation inequalities. As a byproduct, we characterize the sub-Riemannian cut locus as the set of points where the squared sub-Riemannian distance fails to be semiconvex. The techniques are based on sub-Riemannian optimal transport and Jacobi fields.

[Joint work with Luca Rizzi]