Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions




Print this page |


Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs


Chiffres janvier 2014


GdT Thésards : S. Tang

Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold

Local asymptotic stability analysis is conducted for an initial-boundary-value problem of a Korteweg-de Vries equation posed on a finite interval (0,2π (7/3)^(1/2) ). The equation comes with a Dirichlet boundary condition at the left end-point and both of the Dirichlet and Neumann homogeneous boundary conditions at he right endpoint. It is known that the associated linearized equation around the origin is not asymptotically stable. In this paper, the nonlinear Korteweg-de Vries equation is proved to be locally asymptotically stable around the origin through the center manifold method. In particular, the existence of a two-dimensional local center manifold is presented, which is locally exponentially attractive. By analyzing the Korteweg-de Vries equation restricted on the local center manifold, a polynomial decay rate of the solution is obtained.