Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

» En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

GdT Thesards P. Shang

Analyse mathématique et contrôle optimal de lois de conservation multi-échelles: application à des populations cellulaires structurées - Peipei Shang

Dans cette thèse, on a surtout étudié le caractère bien posé pour des équations aux dérivées partielles et des problèmes de contrôle optimal.
On a étudié les problèmes de Cauchy associés à des lois de conservation hyperboliques avec des vitesses non-locales, pour un modèle 1D (système de fabrication industrielle), puis 2D (processus de sélection folliculaire). Dans les deux cas, on montre l’existence et l’unicité de solutions des problèmes de Cauchy, en utilisant le théorème du point fixe de Banach.

On a étudié par la suite des problèmes de contrôle optimal, d’abord sur le modèle 2D, puis sur un modèle basé sur des équations differentielles ordinaires (amplification de
protéines mal repliées). Dans le premier modèle, on montre que les contrôles optimaux sont bang-bang avec un seul instant de commutation. Dans le second modèle, les contrôles optimaux sont relaxés, nous déterminons leur positionnement dans l’espace des contrôles admissibles.