Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Partenariats

CNRS

UPMC

UPMC
Print this page |

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

 » En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

GdT Thésards L. Dimitrio

 

Modelling nucleocytoplasmic transport with application to the intracellular dynamics of the tumor suppressor protein p53 - Luna Dimitrio

In this thesis, I discuss two main subjects coming from biology and I propose two models that mimic the behaviours of the biological networks studied.

The first part of the thesis deals with intracellular transport of molecules. Proteins, RNA and, generally, any kind of cargo molecules move freely in the cytoplasm : intracellular transport as a consequence of Brownian motion is classically modelled as a diffusion process. Some specific proteins, like the tumour suppressor p53, use microtubules to facilitate their way towards the nucleus. Microtubules are a dense network of filaments that point towards the cell centre. Motor proteins bind to these filaments and move along, bearing a cargo bound to them. I propose a simplified bi-dimensional model of nucleocytoplasmic transport taking into account the kinetic processes linked to microtubule transport. Unlike in other models we know, I represented the position of a single MT filament. This model is given by a system of partial differential equations which are cast in different dimensions and connected by suitable exchange rules. A numerical scheme is introduced and several scenarios are presented and discussed to answer the question of which proteins benefit from microtubule transport, depending on their diffusion coefficients.

In the second part of the thesis, I design and analyse a physiologically based model representing the accumulation of protein p53 in the nucleus after triggering of the sentinel protein ATM by DNA damage. The p53 protein plays an essential role in the physiological maintenance of healthy tissue integrity in multicellular organisms (regulation of cell cycle arrest, repair pathways and apoptosis). Firstly, I developed a compartmental ODE model to represent the temporal dynamics of the protein. Since the p53 protein is known for its oscillatory behaviour, I performed a numerical bifurcation study to verify the existence, in the model, of stable periodic solutions. Next, I have expanded the model by the addition of a spatial variable and analysed the spatio-temporal dynamics of p53. After checking the existence of oscillations in the spatial setting, I have analysed the robustness of the system under spatial variations (diffusion and permeability coefficients, cell shape and size).