Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre


Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017


» En savoir +


Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs


Chiffres janvier 2014


GTMN - M. Shashkov 16:30

ReALE - Reconncetion-based Arbitrary Lagrangian Eulerian Method


We present a new reconnection-based multi-material Arbitrary Lagrangian
Eulerian (ALE) method. The main elements in an standard ALE
simulation are an explicit Lagrangian phase in which the solution and grid are
updated, a rezoning phase in which a new grid is defined, and a remapping phase
in which the Lagrangian solution is transferred (conservatively interpolated)
onto the new grid. In standard ALE methods the new mesh from the rezone
phase is obtained by moving grid nodes without changing connectivity of the
mesh. Such rezone strategy has its
limitation due to the fixed topology of the mesh. In our new method we allow connectivity of the mesh to change
in rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of
the mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on using
Voronoi tessellation. Mesh smoothing is achieved by using notion of centroidal Voronoi
diagrams. Because of reconnection we have to use discretizations of Lagrangian
hydro, which are capable to deal with general polygonal mesh. In this work we
use both cell-centered and staggered discretizations on general polygonal
meshes. For remapping stage we use algorithms based on intersections of
Lagrangian and rezoned mesh. We demonstrate performance of our new method on series
of numerical examples and show it superiority and robustness in comparison with
standard ALE methods without reconnection.


A noter : M. Shashkov sera présent au LJLL toutes la journée du
31 janvier au bureau de Martin Vohralik (couloir 15-25, pièce 310) pour
les personnes souhaitant s’entretenir avec lui.