Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre


Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017


» En savoir +


Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs


Chiffres janvier 2014


Séminaire du LJLL - 23 09 2016 14h00 : P. Antonietti

Paola Antonietti (Polytechnique de Milan)
Discontinuous Galerkin spectral element methods for earthquake simulations

In this talk we present and analyse discontinuous Galerkin spectral element methods for the space discretization of the elastodynamics equation. The proposed approach combines the flexibility of discontinuous Galerkin methods to connect together, through a domain decomposition paradigm, spectral element blocks where high-order polynomials are used. In such a way, the spatial discretization and/or the local polynomial degree can be tailored to the region of interest. This approach is particularly well suited for the simulation of complex wave phenomena, such as the seismic response of sedimentary basins or soil-structure interaction problems, where flexibility is crucial in order to simulate correctly the wave-front field while keeping affordable the computational effort. We analyse the semi-discrete formulation as well as the fully-discrete one, which is obtained through an explicit integration scheme. Some validation benchmarks are shown to verify the accuracy, stability and performance of the proposed approach. We also present simulations of real large-scale seismic events in three-dimensional complex media that include both far-field to near-field as well as soil-structure interaction effects. The numerical results have been obtained with the high performance, open-source numerical code SPEED (