Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |


Chiffres clefs

189 personnes travaillent au LJLL

86 permanents

80 chercheurs et enseignants-chercheurs permanents

6 ingénieurs, techniciens et personnels administratifs

103 personnels non permanents

74 doctorants

15 post-doc et ATER

14 émérites et collaborateurs bénévoles


Chiffres janvier 2022


Séminaire du LJLL - 22 06 2018 14h00 : H. Matano

Hiroshi Matano (Université Meiji, Tokyo)

Stability of fronts in a bidomain model

Bidomain models are important mathematical models for describing electro-physiological activities in the heart. While the classical Hodgkin-Huxley model and the FitzHugh-Nagumo model are based on diffusion equations, bidomain models, on the other hand, are formulated as nonlocal pseudo-differential equations. It is known that bidomain models can simulate cardiac electro-physiological activities more accurately than the classical diffusion models.
In this talk, I will focus on the bidomain Allen-Cahn model and study the properties of propagating fronts. First I will review my earlier work with Yoichiro Mori on the linear (spectral) stability of planar fronts on R^2. Then I will discuss the nonlinear stability of front solutions of the bidomain Allen-Cahn model in an infinite strip. I will also talk about bifurcation phenomena of the front solution.
This is joint work with Yoichiro Mori and Mitsunori Nara.