Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |
Stages (3eme / seconde)
Stages de découverte (classe de 3eme, 2nde) Voir https://www.math.univ-paris-diderot.fr/diffusion/index
5 postes ATER en mathématiques à Sorbonne Université
date limite le 5 avril à 16h
Détails ici

Chiffres-clé

Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles

 

Chiffres mars 2019

 

Séminaire du LJLL - 22 02 2019 14h00 : J.J. López Velázquez

Juan José López Velázquez (Université de Bonn)
On the growth of a particle coalescing in a Poisson distribution of obstacles
Résumé
A classical problem in mathematical physics is the derivation of kinetic equations taking as starting point the dynamics of its individual components. There are currently several rigorous results in this direction for particles whose dynamics is given by a Hamiltonian system. Another example of kinetic equation is the so-called Smoluchowski equation which describes the distribution of sizes of a system of particles which evolve according to some deterministic or stochastic dynamics and merge when they collide. In this talk I will discuss the rigorous derivation of the kinetic equation which describes the growth of a moving particle which coalesces with a set of scatterers. The well-posedness and the long time asymptotics of the resulting equation will be also discussed.