Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |
5 postes ATER en mathématiques à Sorbonne Université
date limite le 5 avril à 16h
Détails ici

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Séminaire du LJLL - 19 04 2019 14h00 : A. Lefebvre

Aline Lefebvre (Ecole Polytechnique Palaiseau)
Utilisation de la méthode rapide SCSD pour la simulation numérique de suspensions par éléments finis de frontière
Résumé
Les suspensions formées de particules macroscopiques solides dans un fluide visqueux sont un bon modèle pour de nombreuses applications (retraitement des déchets, processus industriels, envasement, eaux usées, micro-nageurs, ...). D’un point de vue numérique, la simulation de tels systèmes revient à résoudre les équations de Stokes couplées au mouvement rigide des particules. Dans cet exposé, nous montrerons comment cela peut être effectué en utilisant une méthode d’intégrales de frontière.
Dans de telles formulations, la discrétisation du problème mène à des systèmes linéaires pleins dont la taille croit comme le carré du nombre de particules. Pour résoudre cette difficulté, on montrera comment la méthode rapide SCSD (Sine Cardinal Sparse Decomposition) initialement développée par Matthieu Aussal et François Alouges pour l’acoustique peut être étendue au noyau de Stokes. On présentera également une méthode semi-analytique permettant de traiter les intégrales singulières apparaissant dans ce type de formulations.
Nous validerons la méthode ainsi obtenue, du point de vue du temps de calcul et de la précision, sur différents cas tests analytiques et nous comparerons les résultats avec d’autres codes numériques. Nous présenterons par exemple des tests pour une particule ellipsoïdale en milieu infini ou confiné ou encore des tests à plusieurs particules.