Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

 » En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Séminaire du LJLL - 18 11 2016 14h00 : D. Tonon

Daniela Tonon (Université Paris Dauphine)
Régularité des équations d’Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen

Résumé
Les équations d’Hamilton-Jacobi avec Hamiltonien coercif possèdent une régularité inattendue. Un tel résultat a d’abord été obtenu par Capuzzo Dolcetta, Leoni et Porretta, qui ont démontré que les sous-solutions des équations d’Hamilton-Jacobi stationnaires du deuxième ordre avec croissance sur-quadratique sont hölderiennes. Cette régularité a ensuite été démontrée par Cardaliaguet et ses co-auteurs dans le cas d’évolution en utilisant des techniques assez différentes.
Dans cet exposé je démontrerai des estimations dans des espaces de Sobolev pour les solutions des équations d’Hamilton-Jacobi du premier ordre avec Hamiltonien sur-linéaire, et la différentiabilité presque partout de ces solutions. Ce résultat de régularité permet de montrer que les solutions faibles des équations des jeux à champ moyen satisfont l’équation d’Hamilton-Jacobi en un sens plus classique que prévu.