Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

 » En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Séminaire du LJLL - 17 11 2017 14h00 : N. Spillane

Nicole Spillane (Ecole Polytechnique Palaiseau)
Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine

Résumé
Le multipréconditionnement est une technique qui permet d’utiliser plusieurs préconditionneurs simultanément au sein d’un solveur de Krylov. L’erreur à chaque itération est alors minimisée dans un espace de recherche élargi par rapport à la méthode classique et ceci réduit le nombre d’itérations nécessaires à la convergence. Le multipréconditionnement s’applique de façon très naturelle aux méthodes de décomposition de domaine. En effet, elles reposent toutes sur l’idée de découper le domaine de simulation initial en sous domaines et d’utiliser une somme de solveurs locaux (un par sous domaine) en tant que préconditionneur. Avec le multipréconditionnement, toutes les contributions locales sont conservées et servent de direction de recherche (au lieu de seulement leur somme). Une itération multipréconditionnée est bien sûr plus coûteuse qu’une itération avec un préconditionnement classique. Le multipréconditionnement adaptatif a précisément été introduit afin de ne faire des itérations multipréconditionnées que lorsque c’est nécessaire à la convergence. Dans cet exposé je présenterai le gradient conjugué multipréconditionné adaptatif, j’expliquerai comment choisir le processus d’adaptativité et je montrerai des résultats numériques.