Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre

 

Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017

 

 » En savoir +

Chiffres-clé

Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs

 

Chiffres janvier 2014

 

Séminaire du LJLL - 08 12 2017 14h00 : V. Banica

Valeria Banica
(Université Pierre et Marie Curie Paris VI)
Les tourbillons filamentaires à coins et l’équation de Schrödinger 1-D cubique avec données peu régulières

Résumé
Le flot binormal est une équation d’évolution d’une courbe dans l’espace qui modélise la dynamique des tourbillons filamentaires dans les fluides 3-D.
Dans cet exposé je présenterai d’abord le lien classique qui relie le flot binormal et l’équation de Schrödinger cubique 1-D. Nous verrons en particulier que la formation en temps fini par le flot binormal d’un coin de la courbe est liée à l’équation de Schrödinger cubique 1-D dont la donnée initiale est du type masse de Dirac. Je décrirai ensuite les solutions de l’équation de Schrödinger cubique 1-D dont la donnée initiale est une somme de masses de Dirac. Je détaillerai enfin certaines conséquences qui en résultent pour une nouvelle classe de solutions singulières du flot binormal.
Ces résultats ont été obtenus en collaboration avec Luis Vega.