Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Print this page |
1) LPPR/retraites : Le Laboratoire Jacques Louis Lions soutient la motion du CoNRS (https://www.cnrs.fr/comitenational/struc_coord/cpcn/motions/200117_Motion_LPPR_vf.pdf) (suite...)

Plusieurs postes ouverts au recrutement au Laboratoire Jacques-Louis Lions

Attention postes au fil de l’eau Date limite de candidature : jeudi 5 mars 2020 à 16h

Lien vers les postes

Chiffres-clé

Chiffres clefs

189 personnes travaillent au LJLL

90 permanents

82 chercheurs et enseignants-chercheurs permanents

8 ingénieurs, techniciens et personnels administratifs

99 personnels non permanents

73 doctorants

14 post-doc et ATER

12 émérites et collaborateurs bénévoles

 

Chiffres mars 2019

 

Séminaire du LJLL - 08 01 2021 14h00 : A. Bressan

08 janvier 2021 — 14h00
Exposé à distance retransmis par Zoom
Alberto Bressan (Université d’Etat de Pennsylvanie)
A posteriori error estimates for numerical solutions to hyperbolic conservation laws
Résumé
For general n x n hyperbolic systems of conservation laws in one space dimension, several approximation methods are known to converge to the unique entropy admissible solution : the Glimm scheme, front tracking, vanishing viscosity, semidiscrete approximations, and second order hyperbolic regularizations. In some cases, a priori error estimates and asymptotic convergence rates are also available. Notably absent from this list are all the fully discrete numerical schemes, such as the Godunov or the Lax-Friedrichs scheme, where the convergence to a unique limit remains an open problem.
After explaining the key obstruction toward a derivation of a priori estimates for these schemes, this talk will focus on a posteriori error estimates. The main issue to be discussed is the following : given a numerically computed approximation, what do we need to check, in order to conclude that the discrete approximation is close to the exact solution ?
Some results in this direction will be presented, including a "post-processing algorithm" and numerical simulations.
This is a joint work with Maria Teresa Chiri and Wen Shen.