Job shadowing (Year 10, Year 11 students) See https://www.math.univ-paris-diderot.fr/diffusion/index
Key figures
Key figures
189 people work at LJLL
86 permanent staff
80 researchers and permanent lecturers
6 engineers, technicians and administrative staff
103 non-permanent staff
74 Phd students
15 post-doc and ATER
14 emeritus scholars and external collaborators
January 2022
New translation : Séminaire du LJLL - 23 10 2017 14h00 : N. Ayi
EN
Nathalie Ayi (Université Pierre et Marie Curie Paris VI)
Des lois de Newton à l’équation linéaire de Boltzmann sans cut-off
Résumé
Dans cet exposé, on présente une dérivation rigoureuse de l’équation de Boltzmann linéaire sans cut-off à partir d’un système de particules qui interagissent via un potentiel à portée infinie quand le nombre de particules tend vers l’infini avec le scaling de Boltzmann-Grad. La principale difficulté vient du fait que dans ce contexte, à cause de la portée infinie du potentiel, une singularité non intégrable apparaît dans le noyau de collision angulaire, ce qui rend inopérante la seule utilisation de la stratégie de Lanford. Notre démonstration repose donc sur une combinaison de cette stratégie avec des outils développés récemment par Bodineau, Gallagher et Saint-Raymond pour étudier le processus des collisions, ainsi que de nouveaux arguments de dualité qui permettent d’étudier les termes additionnels associés à la partie longue portée et qui mènent à des estimations faibles explicites.