Aller au contenu  Aller au menu  Aller à la recherche

Bienvenue - Laboratoire Jacques-Louis Lions

Postes Enseignants-Chercheurs :

Cliquer sur : Operation POSTES sur le site de la SMAINouvelle fenêtre

Cliquer sur : GALAXIENouvelle fenêtre


Cliquer sur : les postes ouverts au Laboratoire Jacques-Louis Lions en 2017


» En savoir +


Chiffres clefs

217 personnes travaillent au LJLL

83 personnels permanents

47 enseignants chercheurs

13 chercheurs CNRS

9 chercheurs INRIA

2 chercheurs CEREMA

12 ingénieurs, techniciens et personnels administratifs

134 personnels non permanents

85 doctorants

16 post-doc et ATER

5 chaires et délégations

12 émérites et collaborateurs bénévoles

16 visiteurs


Chiffres janvier 2014


Leçons J.-L. Lions 2017 - 16 03 2017 11h30 : Mini-cours 3 E. Candès

Emmanuel Candès (Université de Stanford)
Leçons Jacques-Louis Lions 2017 - Mini-cours 3
Statistics for the big data era
Le mini-cours 3 (jeudi 16 mars de 11h30 à 13h00) a eu lieu dans la salle du séminaire du Laboratoire Jacques-Louis Lions (couloir 15-16, 3ème étage, salle 09) (15-16-3-09).
(pdf du Mini-cours 3 - 3.5 Mo)Nouvelle fenêtre

For a long time, science has operated as follows : a scientific theory can only be empirically tested, and only after it has been advanced. Predictions are deduced from the theory and compared with the results of decisive experiments so that they can be falsified or corroborated. This principle formulated by Karl Popper and operationalized by Ronald Fisher has guided the development of scientific research and statistics for nearly a century. We have, however, entered a new world where large data sets are available prior to the formulation of scientific theories. Researchers mine these data relentlessly in search of new discoveries and it has been observed that we have run into the problem of irreproducibilty. Consider the April 23, 2013 Nature editorial : "Over the past year, Nature has published a string of articles that highlight failures in the reliability and reproducibility of published research." The field of statistics needs to re-invent itself to adapt to the new reality where scientific hypotheses/theories are generated by data snooping. We will make the case that statistical science is taking on this great challenge and discuss exciting achievements.