Optimal control of the COVID-19 epidemic before setting up pharmaceutical interventions

R. Djidjou-Demasse
S. Alizon, M. Choisy, Y. Michalakis, M.T. Sofonea

MIVEGEC (Univ. Montpellier, CNRS, IRD)

GdT virtuel du LJLL
2020-04-07
susceptible (S)
infected but asymptomatic and not infectious (E)
asymptomatic infectious (A)
symptomatic infectious (I)
recovered (R)
dead (D).
Some models incorporate the bifurcation between mild and severe cases after stage E or stage A (or even stage I). This is problematic:

- For high proportions of mild cases (i.e., $1 - p$ is a rare event), one finds very low transition rates to severe cases.
- The fact that an event is rare, does not mean that it occurs very late in the course of the infection.
Some models incorporate the bifurcation between mild and severe cases after stage E or stage A (or even stage I). This is problematic:

- For high proportions of mild cases (i.e., $1 - p$ is a rare event), one finds very low transition rates to severe cases.

- The fact that an event is rare, does not mean that it occurs very late in the course of the infection.
Differential severity.

• To solve this problem, we have made the waiting time refer to an infection event (change from S to E).

• Indeed, it is possible that "by chance" a susceptible person is infected very quickly (the next day) or very late (in two months) whereas for a duration of infection it is biologically unrealistic (you don’t get better in 1 day or 2 months).
Mortality rates.

I^* : the total number of infected hosts the health care system (especially the intensive care units, ICU) can sustain.

- Disease induced mortality

$$\alpha [l_s] = \begin{cases}
\alpha_{\text{min}} & \text{if } l_s < I^* \\
\alpha_{\text{max}} & \text{if } l_s \geq I^*
\end{cases}$$

- Natural mortality increases because of hospital saturation:

$$\mu [l_s] = \begin{cases}
0 & \text{if } l_s < I^* \\
\mu & \text{if } l_s \geq I^*
\end{cases}$$
Mortality rates.

I^*: the total number of infected hosts the health care system (especially the intensive care units, ICU) can sustain.

- Disease induced mortality
 \[
 \alpha [I_s] = \begin{cases}
 \alpha_{\text{min}} & \text{if } I_s < I^* \\
 \alpha_{\text{max}} & \text{if } I_s \geq I^*
 \end{cases}
 \]

- Natural mortality increases because of hospital saturation:
 \[
 \mu [I_s] = \begin{cases}
 0 & \text{if } I_s < I^* \\
 \mu & \text{if } I_s \geq I^*
 \end{cases}
 \]
Mortality rates.

\(I^* \): the total number of infected hosts the health care system (especially the intensive care units, ICU) can sustain.

- **Disease induced mortality**

\[
\alpha [I_s] = \begin{cases}
\alpha_{\min} & \text{if } I_s < I^* \\
\alpha_{\max} & \text{if } I_s \geq I^*
\end{cases}
\]

- **Natural mortality increases because of hospital saturation:**

\[
\mu [I_s] = \begin{cases}
0 & \text{if } I_s < I^* \\
\mu & \text{if } I_s \geq I^*
\end{cases}
\]
Model overview

The SEAIR model ...

\[
\begin{align*}
\dot{S} &= - S \left(\beta, (A, I)^T \right), \\
\dot{E} &= S \mathcal{P} \beta (A, I)^T - (\varepsilon + \mu[I]) E + \nu \mathcal{P}, \\
\dot{A} &= \varepsilon E - (\sigma + \mu[I]) A, \\
\dot{I} &= \sigma A - (\gamma + \mu[I] \mathbb{I} + d(I)) I,
\end{align*}
\]

R. Djidjou-Demasse et al., medRxiv, 2020
Objective function

Deaths directly attributable to COVID-19 ($D_{\text{COVID}} = \alpha [I_s] I_s$).
Deaths indirectly linked to COVID-19 infection but due to the saturation of the hospital system ($D_{\text{SAT}} = \mu [I_s] N$).

The control scheme is optimal if it minimizes the objective function

$$M[c] = \int_0^T (D_{\text{COVID}}(t) + D_{\text{SAT}}(t)) \, dt + B \int_0^T c^2(t) \, dt,$$

B is a coefficient allowing to weight the "cost" associated to the control implementation ($c(t)$) relative to the cost due to deaths.
Objective function

Deaths directly attributable to COVID-19 ($D_{COVID} = \alpha [l_s] l_s$).
Deaths indirectly linked to COVID-19 infection but due to the saturation of the hospital system ($D_{SAT} = \mu [l_s] N$).

The control scheme is optimal if it minimizes the objective function

$$M[c] = \int_0^T (D_{COVID}(t) + D_{SAT}(t)) \, dt + B \int_0^T c^2(t) \, dt,$$

B is a coefficient allowing to weight the "cost" associated to the control implementation ($c(t)$) relative to the cost due to deaths.
Objective function

Deaths directly attributable to COVID-19 ($D_{\text{COVID}} = \alpha[I_s] I_s$).
Deaths indirectly linked to COVID-19 infection but due to the saturation of the hospital system ($D_{\text{SAT}} = \mu[I_s] N$).

$$M[c] = \int_0^T (D_{\text{COVID}}(t) + D_{\text{SAT}}(t)) \, dt + B \int_0^T c^2(t) \, dt,$$

Find the function c^* satisfying

$$M(c^*) = \min_{c \in \mathcal{U}} M(c),$$

on the set $\mathcal{U} = \{c \in L^\infty(0, \infty) : 0 \leq c(\cdot) \leq c_{\text{max}}\}$, where $c_{\text{max}} \leq 1$, where

...
Objective function

Deaths directly attributable to COVID-19 ($D_{COVID} = \alpha [l_s] \ l_s$).
Deaths indirectly linked to COVID-19 infection but due to the saturation of
the hospital system ($D_{SAT} = \mu [l_s] \ N$).

$$M[c] = \int_0^T (D_{COVID}(t) + D_{SAT}(t)) \, dt + B \int_0^T c^2(t) \, dt,$$

$$M(c^*) = \min_{c \in U} M(c),$$

Time (T) required for pharmaceutical intervention:

- Treatment: generally few months
- Vaccine: at least 18 to 24 months
Pontryagin’s maximum principle and introduce the following Hamiltonian

\[H(c) = \alpha [I_s] I_s + \mu [I_s] N + Bc^2 + \sum_{v \in V} z_v f_v, \]

where \(V = \{S, E_m, E_s, A_m, A_s, I_m, I_s, R_m, R_s\} \) and \((z_v)_{v \in V}\) are adjoint functions.

The necessary conditions for the existence of the solution:

\[\dot{z}_v = -\frac{\partial H}{\partial v}, \quad \text{for, } v \in V, \]
\[\frac{\partial H}{\partial c} = 0. \]

Optimal control scenario

(a) The graph shows the function c over time (weeks) with three different control scenarios: Do nothing, Optimal, and Constant control. The Optimal control shows a rapid decline in c, while the Do nothing control shows a gradual increase.

(b) The graph plots \log_{10}(I_s) over time (weeks) with three different control scenarios: Do nothing, Optimal, and Constant control. The Optimal control keeps I_s at a lower level compared to the other two.

(c) The graph shows \log_{10}(D_{COVID}) over time (weeks) with three different control scenarios: Do nothing, Optimal, and Constant control. The Optimal control keeps D_{COVID} at a lower level compared to the other two.

(d) The graph plots \log_{10}(D_{SAT}) over time (weeks) with three different control scenarios: Do nothing, Optimal, and Constant control. The Optimal control keeps D_{SAT} at a lower level compared to the other two.
Such a solution leads to an increasing level of control with a maximum reached near the fourth month of the epidemics and a steady decrease until vaccine deployment.
Constant control scenario

(a) Time (weeks)

(b) log_{10}(I_s)

(c) log_{10}(D_COVID)

(d) log_{10}(D_{SAT})

- Do nothing
- Optimal
- Constant control
Effect of the cost of control B

(a) C vs. Time (weeks)
(b) $\log_{10}(I_s)$ vs. Time (weeks)
(c) $\log_{10}(D)$ vs. Time (weeks)

- Do nothing
- $B=0.1$
- $B=1$
- $B=10$
- $B=50$
- $B=800$
Effect of the initial epidemics size

(a) C vs. Time (weeks)
(b) $\log_{10}(I_s)$ vs. Time (weeks)
(c) $\log_{10}(D)$ vs. Time (weeks)

- Do nothing
- $I_0 = 10 \, I^*$
- $I_0 = I^*$
- $I_0 = 0.01 \, I^*$
Full lock-down vs Optimal strategy

(a)

(b)

(c)

- Do nothing
- 12–weeks
- 50–weeks
- Optimal
team work on COVID-19

available reports

• basic and effective reproduction number estimation for France
• herd immunity threshold vs final size proportion
• phylodynamics

COVID work in progress Age-structure model, non-markovian simulations

R. Djidjou-Demasse et al., medRxiv, 2020