Problèmes de contrôle liés aux mouvements de foules

M. Duprez1, M. Morancey1, F. Rossi2

1Institut de Mathématiques de Marseille
2Università degli Studi di Padova

Colloque d’ouverture 50 ans du Laboratoire Jacques-Louis Lions
4-8 mars 2019 Roscoff (France)
06/03/19
Motivation: Evacuation / egress in panic situation

<table>
<thead>
<tr>
<th>Date</th>
<th>Place</th>
<th>Venue</th>
<th>Deaths</th>
<th>Injured</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>Lima, Peru</td>
<td>Stadium</td>
<td>318</td>
<td>500</td>
<td>Goal disallowed</td>
</tr>
<tr>
<td>1992</td>
<td>Bastia, Corsica</td>
<td>Stadium</td>
<td>17</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Lusaka, Zambia</td>
<td>Stadium</td>
<td>9</td>
<td>78</td>
<td>Stampede after Zambia’s victory over Sudan</td>
</tr>
<tr>
<td>1996</td>
<td>Guatemala City,</td>
<td>Stadium</td>
<td>80</td>
<td>180</td>
<td>Fans trying to force their way into the stadium</td>
</tr>
<tr>
<td></td>
<td>Guatemala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Minsk, Belarus</td>
<td>Subway</td>
<td>51</td>
<td>150</td>
<td>Heavy rain at rock concert</td>
</tr>
<tr>
<td>2000</td>
<td>Durban, South Africa</td>
<td>Disco</td>
<td>13</td>
<td>44</td>
<td>Tear gas</td>
</tr>
<tr>
<td>2000</td>
<td>Roskilde, Denmark</td>
<td>Stadium</td>
<td>8</td>
<td>25</td>
<td>Failure of loud speakers</td>
</tr>
</tbody>
</table>

Framework: Model

Velocity

Initial crowd

Target crowd

Control region
(Fixed)
Macroscopic model

Search u such that

\[\left\{ \begin{array}{l}
\partial_t \mu + \nabla \cdot ((v + 1_\omega u) \mu) = 0 \\
\mu(0) = \mu^0, \; \mu(T) \approx \mu^1
\end{array} \right. \]

with

- $v :$ population velocity
- $1_\omega(x)u(x, t) :$ control
Problematic
We search \(u \), called control, such that the solution \(\mu \) to system
\[
\begin{cases}
\partial_t \mu + \nabla \cdot ((v + \mathbb{1}_\omega u)\mu) = 0 \\
\mu(0) = \mu^0
\end{cases}
\]
satisfies:

- \(\mu \) near a given target at time \(T \)

\[
\forall \varepsilon > 0, \mu^0, \mu^1, \exists u \text{ s.t. } d(\mu(T), \mu^1) \leq \varepsilon.
\]

- **Approximate controllability**

- \(\bar{y} \) reach a target at time \(T \)

\[
\forall \mu^0, \mu^1, \exists u \text{ s.t. } \mu(T) = \mu^1.
\]

- **Exact controllability**

We call **minimal time** the infimum of \(T \) for which the approximate/exact controllability holds.
Framework: Distance?

Distance between two continuous crowds
If we represent the population by a **density compactly supported**:

\[
\| \mu_0 - \mu_1 \|_{L^p} = \| \mu_0 - \mu_2 \|_{L^p}
\]

The \(L^p\) **distance is not a good distance for the crowds!!!**
Monge problem (1781)

Distance: minimal cost to send a mass on another.

Continuous case

Discrete case
Framework: Wasserstein distance

We denote by:

- $\Gamma := \{ \gamma : \mathbb{R}^d \to \mathbb{R}^d \text{ Borel} \}$.
- $\mathcal{P}_{ac}^c(\mathbb{R}^d) := \{ \mu \in \mathcal{P}_c(\mathbb{R}^d) : \text{abs. cont. w.r.t. the Lebesgue measure} \}$.

Definition

Let $\gamma \in \Gamma$ and $\mu \in \mathcal{P}_{ac}^c(\mathbb{R}^d)$. **Push-forward** of μ with γ:

$$(\gamma \# \mu)(E) := \mu(\gamma^{-1}(E)),$$

for all $E \subset \mathbb{R}^d$ such that $\gamma^{-1}(E)$ is μ-measurable.

Definition (Monge Problem)

Let $p \in [1, \infty)$ and $\mu, \nu \in \mathcal{P}_{ac}^c(\mathbb{R}^d)$. **Wasserstein distance** between μ and ν:

$$W_p(\mu, \nu) = \min_{\gamma \in \Gamma} \left\{ \left(\int_{\mathbb{R}^d} |\gamma(x) - x|^p d\mu \right)^{1/p} : \gamma \# \mu = \nu \right\}.$$
Framework: Wasserstein distance

We denote by:

- \(\Gamma := \{ \gamma : \mathbb{R}^d \to \mathbb{R}^d \text{ Borel} \} \).
- \(\mathcal{P}_c^{ac}(\mathbb{R}^d) := \{ \mu \in \mathcal{P}_c(\mathbb{R}^d) : \text{abs. cont. w.r.t. the Lebesgue measure} \} \).

Definition

Let \(\gamma \in \Gamma \) and \(\mu \in \mathcal{P}_c^{ac}(\mathbb{R}^d) \). **Push-forward** of \(\mu \) with \(\gamma \):

\[
(\gamma \# \mu)(E) := \mu(\gamma^{-1}(E)),
\]

for all \(E \subset \mathbb{R}^d \) such that \(\gamma^{-1}(E) \) is \(\mu \)-measurable.

Definition (Monge Problem)

Let \(p \in [1, \infty) \) and \(\mu, \nu \in \mathcal{P}_c^{ac}(\mathbb{R}^d) \). **Wasserstein distance** between \(\mu \) and \(\nu \):

\[
W_p(\mu, \nu) = \min_{\gamma \in \Gamma} \left\{ \left(\int_{\mathbb{R}^d} |\gamma(x) - x|^p \, d\mu \right)^{1/p} : \gamma \# \mu = \nu \right\}.
\]
Framework: Wasserstein distance

We denote by:

- \(\Gamma := \{ \gamma : \mathbb{R}^d \rightarrow \mathbb{R}^d \text{ Borel} \} \).
- \(\mathcal{P}_{ac}^c(\mathbb{R}^d) := \{ \mu \in \mathcal{P}_c(\mathbb{R}^d) : \text{abs. cont. w.r.t. the Lebesgue measure} \} \).

Definition

Let \(\gamma \in \Gamma \) and \(\mu \in \mathcal{P}_{ac}^c(\mathbb{R}^d) \). **Push-forward** of \(\mu \) with \(\gamma \):

\[
(\gamma \# \mu)(E) := \mu(\gamma^{-1}(E)),
\]
for all \(E \subset \mathbb{R}^d \) such that \(\gamma^{-1}(E) \) is \(\mu \)-measurable.

Definition (Monge Problem)

Let \(p \in [1, \infty) \) and \(\mu, \nu \in \mathcal{P}_{ac}^c(\mathbb{R}^d) \). **Wasserstein distance** between \(\mu \) and \(\nu \):

\[
W_p(\mu, \nu) = \min_{\gamma \in \Gamma} \left\{ \left(\int_{\mathbb{R}^d} |\gamma(x) - x|^p \, d\mu(x) \right)^{1/p} : \gamma \# \mu = \nu \right\}.
\]
Definition

We define the flow (or the characteristic) associated to \(w : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d \) as \((x^0, t) \mapsto \Phi^w_t(x^0)\) such that for all \(x^0 \in \mathbb{R}^d \), \(t \mapsto \Phi^w_t(x^0) \) is solution to

\[
\begin{aligned}
\dot{x}(t) &= w(x(t), t), \quad t \geq 0, \\
x(0) &= x^0.
\end{aligned}
\]

Theorem (Method of Characteristics)

Let \(T > 0 \), \(\mu^0 \in \mathcal{P}_c(\mathbb{R}^d) \) and \(w \) a velocity field uniformly bounded, \textbf{Lipschitz} in space and measurable in time. Then

\[
\begin{aligned}
\partial_t \mu + \nabla \cdot (w \mu) &= 0 & \text{in } \mathbb{R}^d \times \mathbb{R}^+, \\
\mu(0) &= \mu^0 & \text{in } \mathbb{R}^d,
\end{aligned}
\]

admits a unique solution \(\mu \) in \(C^0([0, T]; \mathcal{P}_c(\mathbb{R}^d)) \).
Controllability: Geometric condition

Geometric condition

(i) \(\forall x^0 \in \text{supp}(\mu^0), \exists t^0 \in (0, T) : \Phi_{t^0}^v(x^0) \in \omega. \)

(ii) \(\forall x^1 \in \text{supp}(\mu^1), \exists t^1 \in (0, T) : \Phi_{-t^1}^v(x^1) \in \omega. \)

Theorem (D.-Morancey-Rossi 2017)

Let \(\mu^0, \mu^1 \in \mathcal{P}^{ac}_c(\mathbb{R}^d) \). Assume the Geometric Condition.
System (1) is **approximately controllable** with a Lipschitz control.
Controllability: Sketch of proof for the approx. contr.

Global strategy

(i) Step 1: We send μ^0 to ν^0 supported in a square $S \subset \omega$. We send μ^1 to ν^1 supported in a square $S \subset \omega$.

(ii) Step 2: We send approximately ν^0 to ν^1.

Final computation:

$\mu^0 u^1 u^3 \rightarrow \nu^0 u^3 \rightarrow \nu^1 \leftarrow u^2 \rightarrow \mu(T)$
Discretization following the mass of μ^0 and μ^1

Assume that supp(μ^0), supp(μ^1) \subset Square $\subset \Omega$.

\[
\int_{A^0_{i,j}} d\mu^0 = \int_{A^1_{i,j}} d\mu^1 = \frac{1}{n^2}
\]
Controllability: Sketch of proof for the approx. contr.

Center of the cells

\[\int_{B_{ij}^0} d\mu^0(x) = \int_{B_{ij}^1} d\mu^1(x) = \frac{1}{n^2} - \frac{1}{n^3} \]

\[B_{ij}^0 = (b_{ij}^0 - b_{ij}^{0+}) \times (b_{ij}^{0-}, b_{ij}^{0+}) \quad B_{ij}^1 = (b_{ij}^1 - b_{ij}^{1+}) \times (b_{ij}^{1-}, b_{ij}^{1+}) \]

Remark: We do not control the mass outside \(B_{ij}^0 \).
Construction of the flow

We send linearly $\mu^0_{|B^0_{ij}}$ on B^1_{ij}:

Remark: $|B^0_{ij}| \xrightarrow{n \to \infty} 0$.
Construction of the flow

For all \(x^0 = (x_1^0, x_2^0) \in A_{ij} \), we build the flow

\[
\Phi^u_t(x^0) := \begin{pmatrix}
a_i^+ - x_1^0 c_i^- (t) + \frac{x_1^0 - a_i^-}{a_i^+ - a_i^-} c_i^+ (t) \\
a_i^- - a_i^+ \\
a_{ij}^+ - x_2^0 \\
a_{ij}^- - a_{ij}^+
\end{pmatrix},
\]

where

\[
\begin{align*}
c_i^- (t) &= (b_i^- - a_i^-)t + a_i^- , \\
c_i^+ (t) &= (b_i^+ - a_i^+)t + a_i^+ , \\
c_{ij}^- (t) &= (b_{ij}^- - a_{ij}^-)t + a_{ij}^- , \\
c_{ij}^+ (t) &= (b_{ij}^+ - a_{ij}^+)t + a_{ij}^+ .
\end{align*}
\]

Thus

\[
\Phi^u_T(A_{ij}) = B_{ij} .
\]

Remark: We take a \(C^\infty \) extension outside \(A_{ij} \).
Construction of the control

The corresponding velocity is given by

\[
\begin{align*}
 u_1(x, t) &= \alpha_i(t)x_1 + \beta_i(t), \\
 u_2(x, t) &= \alpha_{ij}(t)x_2 + \beta_{ij}(t),
\end{align*}
\]

where

\[
\begin{align*}
 \alpha_i(t) &= \frac{b_i^+ - b_i^- + a_i^- - a_i^+}{c_i^+(t) - c_i^-(t)}, \\
 \beta_i(t) &= \frac{a_i^+ b_i^- - a_i^- b_i^+}{c_i^+(t) - c_i^-(t)}, \\
 \alpha_{ij}(t) &= \frac{b_{ij}^+ - b_{ij}^- + a_{ij}^- - a_{ij}^+}{c_{ij}^+(t) - c_{ij}^-(t)}, \\
 \beta_{ij}(t) &= \frac{a_{ij}^+ b_{ij}^- - a_{ij}^- b_{ij}^+}{c_{ij}^+(t) - c_{ij}^-(t)}.
\end{align*}
\]
Estimation of the distance

Define

\[R := (0, 1)^2 \setminus \bigcup_{i,j} B_{ij}^1, \]

We have

\[
W_1(\mu^1, \mu(T)) \leq \sum_{i,j=1}^{n} W_1(\mu^1 \times 1_{B_{ij}^1}, \mu(T) \times 1_{B_{ij}^1}) + W_1(\mu^1 \times 1_R, \mu(T) \times 1_R).
\]

Included in \(B_{ij}^1 \)

Small mass

No control
There exist measurable maps $\gamma_{ij} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $\overline{\gamma} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that

$$\gamma_{ij} \#(\mu^1 \times 1_{B_{ij}^1}) = \mu(T) \times 1_{B_{ij}^1} \quad \text{and} \quad \overline{\gamma} \#(\mu^1 \times 1_R) = \mu(T) \times 1_R.$$

We have

$$W_1(\mu^1 \times 1_{B_{ij}^1}, \mu(T) \times 1_{B_{ij}^1}) = \int_{B_{ij}^1} |x - \gamma_{ij}(x)| d\mu^1(x)$$

$$\leq [(b_{i+}^1 - b_{i-}^1) + (b_{ij}^{1+} - b_{ij}^{1-})] \int_{B_{ij}^1} d\mu^1(x)$$

$$\leq (b_{i+}^1 - b_{i-}^1 + b_{ij}^{1+} - b_{ij}^{1-}) \left(\frac{1}{n^2} - \frac{1}{n^3} \right)$$

and

$$W_1(\mu^1 \times 1_R, \mu(T) \times 1_R) \leq \int_R |x - \overline{\gamma}(x)| d\mu^1(x)$$

$$\leq \text{diam}(S) \frac{1}{n}.$$

Thus

$$W_1(\mu^1, \mu(T)) \xrightarrow{n \to \infty} 0.$$
Minimal time: Microscopic model

If we take \(\mu^0 = \frac{1}{n} \sum_{i=1}^{n} \delta_{X^0_i} \) (with \(X^0_i \neq X^0_j \) for all \(i \neq j \)) as initial data in

\[
\begin{aligned}
\{ & \partial_t \mu + \nabla \cdot ((v + 1_\omega u) \mu) = 0 \\
\mu(0) = \mu^0,
\end{aligned}
\]

then the solution is given by

\[
\mu(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i(t)}
\]

where \(X_i \) is solution to

\[
\begin{aligned}
\{ & \dot{X}_i(t) = v(X_i(t)) + 1_\omega(X_i(t))u(X_i(t), t) \\
X_i(0) = X^0_i,
\end{aligned}
\]

where \(X^0 := \{X^0_1, \ldots, X^0_n\} \).

We will call this system the microscopic model.
Minimal time : Microscopic model

Computation of the optimal time

Theorem

Assume the Geometric Condition and ω convex.
Assume the $\{t^0_i\}_{i \in \{1,...,n\}}$ et $\{t^1_i\}_{i \in \{1,...,n\}}$ are increasingly and decreasingly ordered respectively, then the **minimal time** to exactly steer X^0 to X^1 is equal to:

$$T_0 := \max_{i \in \{1,...,n\}} \{t^0_i + t^1_i\}.$$

where

$$\begin{align*}
t^0_i &:= \inf\{t \geq 0 : \Phi^\nu_t(X^0_i) \in \omega\} \text{ arrival time of } X^0_i \text{ in } \omega \\
t^1_i &:= \inf\{t \geq 0 : \Phi^\nu_t(X^1_i) \in \omega\} \text{ arrival time of } X^1_i \text{ in } \omega
\end{align*}$$
Minimal time : Macroscopic model

We define for all $m \in [0, 1]$

\[
\begin{align*}
\mathcal{F}_0^{-1}(m) &:= \inf \{ t \geq 0 : \mathcal{F}_0(t) \geq m \}, \\
\mathcal{F}_1^{-1}(m) &:= \inf \{ t \geq 0 : \mathcal{F}_1(t) \geq m \},
\end{align*}
\]

with for all $t \geq 0$

\[
\begin{align*}
\mathcal{F}_0(t) &:= \mu^0(\{ x^0 \in \text{Supp}(\mu^0) : t^0(x^0) \leq t \}), \\
\mathcal{F}_1(t) &:= \mu^1(\{ x^1 \in \text{Supp}(\mu^0) : t^1(x^1) \leq t \}).
\end{align*}
\]

Theorem (D.-Morancey-Rossi 17’)

Let $\mu^0, \mu^1 \in \mathcal{P}_c^{ac}(\mathbb{R}^d)$. Assume the Geometric Condition and ω convex.

\[
T_0 := \max_{m \in [0,1]} \{ \mathcal{F}_0^{-1}(m) + \mathcal{F}_1^{-1}(1 - m) \}.
\]

Then

(i) For all $T > T_0$, System (1) is **approximately controllable** from μ^0 to μ^1 at time T with a control $\mathbb{1}_\omega u : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^d$ uniformly bounded, Lipschitz in space and measurable in time.

(ii) For all $T \in (T_2^*, T_0)$, System (1) is **not approximately controllable** from μ^0 to μ^1, where T_2^* is the time at which each agent has crossed the control region.
Algorithm 1

Step 1: Discretisation of μ^0 and μ^1
(i) Construction of the uniform mesh
(ii) Computation of the cells B_{ij}^0 and B_{ij}^1 following the mass

Step 2: Computation of the discrete minimal time

$$T_0 := \max_{1 \leq i \leq N-R} \{ t_{i+R}^0 + t_i^1 \}$$

where $(t_i^0)_i$ increasing and $(t_i^1)_i$ decreasing.

Step 4: Computation of the optimal discrete permutation

Step 5: Concentration of the masses (if necessary)

Step 6: Final computation
Consider the initial data μ^0 and the target μ^1 defined by
\[
\mu^0 := \begin{cases}
1/8 & \text{if } (x, y) \in (0, 4) \times (1, 3), \\
0 & \text{otherwise}
\end{cases}
\]
and
\[
\mu^1 := \begin{cases}
1/16 & \text{if } (x, y) \in (8, 14) \times (0, 4) \setminus (9, 13) \times (2, 3), \\
0 & \text{otherwise}.
\end{cases}
\]

We fix the velocity field $v := (1, 0)$ and the control region $\omega := (5, 7) \times (0, 4)$. The **minimal time** is equal to : 8s.
Numerical simulation: Macroscopic model
images.math.cnrs.fr/modelisation-de-mouvements-de.html
B. Maury, J. Venel, 2011.
Thank you for your attention!
Controllability

Exact controllability

Remark

- With a Lipschitz velocity field, the flow is a homeomorphism, then $\text{supp}(\mu^0)$ and $\text{supp}(\mu^1)$ have to be homeomorph. In particular, we cannot separate a mass in two parts or bring together to different masses.

- Even with a BV velocity field we cannot bring together to different masses.

- For a Borel velocity field, the solution is not guaranteed unique.

Theorem (D.-Morancey-Rossi 2017)

Let $\mu^0, \mu^1 \in \mathcal{P}_c(\mathbb{R}^d)$. Assume the Geometric Condition.

- System (1) is not always exactly contr. with a Lipschitz control (or BV).

- There exists a couple (μ, u) solution of system (1) such that $\mu(T) = \mu^1$ with a Borel control.
Exact controllability

Remark
- With a **Lipschitz velocity** field, the flow is a homeomorphism, then \(\text{supp}(\mu^0)\) and \(\text{supp}(\mu^1)\) have to be homeomorph. In particular, we cannot separate a mass in two parts or bring together to different masses.
- Even with a BV velocity field we cannot bring together to different masses.
- For a **Borel velocity** field, the solution is not guaranteed unique.

Theorem (D.-Morancey-Rossi 2017)

Let \(\mu^0, \mu^1 \in \mathcal{P}_c(\mathbb{R}^d)\). Assume the Geometric Condition.
- System (1) is **not always exactly contr.** with a Lipschitz control (or BV).
- There exists a couple \((\mu, u)\) solution of system (1) such that \(\mu(T) = \mu^1\) with a Borel control.
Framework: Wasserstein distance

For $\mu, \nu \in \mathcal{P}_c(\mathbb{R}^d)$, we denote by $\Pi(\mu, \nu)$ the set of transference plans from μ to ν, i.e. the probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ which have marginals μ and ν:

$$\int_{y \in \mathbb{R}^d} d\pi(x, y) = d\mu(x) \quad \text{and} \quad \int_{x \in \mathbb{R}^d} d\pi(x, y) = d\nu(y).$$

Definition (Kantorovich problem)

Let $p \in [1, \infty)$ and $\mu, \nu \in \mathcal{P}_c(\mathbb{R}^d)$. Wasserstein distance between μ and ν:

$$W_p(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \left\{ \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^p d\pi(x, y) \right)^{1/p} \right\}$$
Minimal time : Macroscopic model, sketch of proof

Step 1 : Uniform discretization of $\text{supp}(\mu^0)$ and $\text{supp}(\mu^1)$

We take h small enough such that the cells K_h satisfies for a $t^* > 0$

$$\Phi_{t^*}(K_h) \subset\subset \omega,$$

Step 2 : Discretization following the mass of the cells K_h

- Each cell will the same mass $1/n^2$.
- The rest will be negligible.
Step 3 : Association of the masses

We use the results of the discrete case to associate the masses

- We approximate the measure by a sum of Dirac (centers of the cells).
- We control this discrete approximation.
- We follow the trajectory of the Dirac masses, up to a concentration of the mass.

Difficulty : Compare \(T_0(X^0, X^1) \) and \(T_0(\mu^0, \mu^1) \).
We recall that

\[
\begin{cases}
 \dot{X}_i(t) = v(X_i(t)) + \mathbf{1}_{\omega}(X_i(t))u(X_i(t), t) \\
 X_i(0) = X_i^0
\end{cases}
\]

Theorem (D.-Morancey-Rossi 2017)

Assume the Geometric Condition and \(\omega \) convex.

System (1) is **exactly controllable** with a Lipschitz control.

Moreover the **minimal time** to exactly steer \(X^0 \) to \(X^1 \) is equal to:

\[
T_0 = \min_{\sigma \in S_n} \max_{i \in \{1, \ldots, n\}} |t^0_i + t^1_{\sigma(i)}|
\]

where

\[
\begin{cases}
 t^0_i := \inf\{t \geq 0 : \Phi_t^v(X_i^0) \in \omega\} \\
 t^1_i := \inf\{t \geq 0 : \Phi_t^v(X_i^1) \in \omega\}
\end{cases}
\]
Define

\[K_{ij} := \begin{cases} \| (Y^0_i, t^0_i) - (Y^1_j, T - t^1_j) \|_{\mathbb{R}^{d+1}} & \text{if } t^0_i < T - t^1_j, \\ \infty & \text{otherwise}, \end{cases} \]

where

\[\begin{cases} t^0_i := \inf \{ t \geq 0 : \Phi^v_i (X^0_i) \in \omega \} \\ t^1_i := \inf \{ t \geq 0 : \Phi^v_i (X^1_i) \in \omega \} \end{cases} \]
Computation of the optimal permutation

Consider the minimisation problem

$$\inf_{\pi \in \mathcal{B}_n} \left\{ \frac{1}{n} \sum_{i,j=1}^{n} K_{ij} \pi_{ij} \right\},$$

where \mathcal{B}_n is the set of bistochastic matrices $\pi := (\pi_{ij})_{1 \leq i, j \leq n}$, i.e.

$$\sum_{i=1}^{n} \pi_{ij} = 1, \sum_{j=1}^{n} \pi_{ij} = 1, \pi_{ij} \geq 0.$$

The infimum is reached.
Since \mathcal{B}_n is convex, there exists a minimum which is a permutation matrix.
No intersection of the trajectories

By contradiction: no intersection of the trajectories

\[(Y_{\sigma(j)}, T - t_{\sigma(j)}) \]

\[(Y_{\sigma(i)}, T - t_{\sigma(i)}) \]

\[(Y_{i}^{0}, t_{i}^{0}) \]

\[(Y_{j}^{0}, t_{j}^{0}) \]
Algorithm 2 Minimal time problem for exact contr. : Discrete case

Step 1 : Computation of the minimal time.

\[T_0 := \max_{1 \leq i \leq N} \{ t^0_i + t^1_i \} \]

where \((t^0_i)_i \) increasing and \((t^1_i)_i \) decreasing.

Step 2 : Computation of an optimal permutation to steer \(X^0 \) to \(X^1 \)

\[
\inf_{\pi \in \mathcal{B}_n} \left\{ \frac{1}{n} \sum_{i,j=1}^{n} K_{i,j} \pi_{ij} \right\}
\]

Step 3 : Computation of the control \(u \) and the solution \(X \)
Numerical simulation: Microscopic model

Initial configuration X^0

Final configuration X^1

$v := (1, 0)$.
Numerical simulation : Microscopic model