Estimating and using deformation constraints

Barbara Gris

bgris.maths@gmail.com
LJLL, UPMC, Paris

Joint work with Stanley Durrleman (ICM, France), Lucile Mégret (UPMC, France), Alain Trouvé (ENS Paris-Saclay, France), Olivier Verdier (KTH, Sweden), Ozan Öktem (KTH, Sweden)
INTRODUCTION
Studying populations of shapes
Idea: characterizing the difference between two shapes thanks to the "best" diffeomorphism transforming one into the other.

D’Arcy Thompson (On Growth and Form, 1917)
Definition (S. Arguillère)

A **shape space** on \mathbb{R}^d ($d \in \mathbb{N}^*$) is a manifold \mathcal{O} such that:

- The group of diffeomorphisms of \mathbb{R}^d continuously acts on \mathcal{O}
- This action can be differentiated at id, giving the infinitesimal action ξ

Diffeomorphometry and geodesic positioning systems for human anatomy, Miller et al, Technology 2014. ($\mathcal{M} = \mathcal{O}$)
Definition (Large deformation)
For $v \in L^1([0, 1], V)$, we set φ^v the flow of v:

$$\begin{align*}
\dot{\varphi}^v(t) &= v(t) \circ \varphi^v(t) \\
\varphi^v(0) &= Id
\end{align*}$$

\rightarrow Large deformation: φ^v_t.
Estimating and using deformation constraints

Introduction

Metric on $V \rightarrow$ metric on \mathcal{O}

Estimating and using deformation constraints

Introduction

Incorporating a structure in large deformations:

- **Higher order momentum** [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum distributions and locally affine lddmm registration. SIAM Journal on Imaging Sciences, 2013]

1. Defining easily complex generators
2. Evolution of generators during integration of the flow
3. Ensuring mathematical properties
Introduction

Deformation modules
STRUCTURED VECTOR FIELDS USING A DEFORMATION PRIOR
\[M = (\mathcal{O}, H, \zeta, \xi, c) \]
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

Structured vector field

Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

Structured vector field

Deformation module: definition and first examples

\[H \]

Controls

\[\mathcal{O} \times H \]

Geometrical descriptor

Infinitesimal action

\[TO \]

Cost

\[C \]

Field generator

\[\zeta \]

\[\mathcal{C}_0^\ell(\mathbb{R}^d) \]
Estimating and using deformation constraints
- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

Structured vector field

Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints
- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
Estimating and using deformation constraints

Structured vector field

Deformation module: definition and first examples
Estimating and using deformation constraints

- Structured vector field
- Deformation module: definition and first examples
ESTIMATING AND USING DEFORMATION CONSTRAINTS

Modular large deformations

STRUCTURED LARGE DEFORMATION
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model

\[M = (O, H, \zeta, \xi, c) \]

Field generator

Infinitesimal action

Cost

Controls

Geometrical descriptors

\[C^\ell_0(\mathbb{R}^d) \]
Definition (Finite energy controlled paths on \mathcal{O})

We denote by Ω the set of measurable curves $t \mapsto (q_t, h_t) \in \mathcal{O} \times H$ such that:

- $\dot{q}_t = \xi_{q_t}(v_t)$ where $v_t = \zeta_{q_t}(h_t) \in \zeta_{q_t}(H)$
Estimating and using deformation constraints

Modular large deformations

From a deformation module to a deformation model

\[M = (O, H, \zeta, \xi, c) \]

\(\mathbb{R}^+ \)

\(H \)

\(O \times H \)

\(C^\ell_0(\mathbb{R}^d) \)

Field generator

Infinitesimal action

Geometrical descriptors

Controls

Cost

\[\zeta \]

\(T \)
Definition (Finite energy controlled paths on \(\mathcal{O} \))

We denote \(\Omega \) the set of measurable curves \(t \mapsto (q_t, h_t) \in \mathcal{O} \times H \) such that:

\[\dot{q}_t = \xi_{q_t}(v_t) \quad \text{where} \quad v_t = \zeta_{q_t}(h_t) \in \zeta_{q_t}(H) \]

\[\text{Energy} \ E(q, h) = \int_0^1 c_{q_t}(h_t) dt < \infty \]
Definition

Let $M = (\mathcal{O}, H, \zeta, \xi, c)$ be a C^k-deformation module of order ℓ. We say that M satisfies the **Uniform Embedding Condition (UEC)** if there exists a Hilbert space of vector fields V continuously embedded in $C_0^{\ell+k}(\mathbb{R}^d)$ and a constant $C > 0$ such that for all $o \in \mathcal{O}$ and for all $h \in H$, $\zeta_o(h) \in V$ and

$$|\zeta_o(h)|_V^2 \leq Cc_o(h)$$

Proposition

If $M^l, l = 1 \cdots L$, are C^k-deformation modules of order ℓ that satisfy UEC, then $\mathcal{C}(M^l, l = 1 \cdots L)$ satisfies UEC.
Definition (Finite energy controlled paths on \mathcal{O})

We denote Ω the set of measurable curves $t \mapsto (q_t, h_t) \in \mathcal{O} \times H$ such that:

- $\dot{q}_t = \xi_{q_t}(v_t)$ where $v_t = \zeta_{q_t}(h_t) \in \zeta_{q_t}(H)$
- Energy $E(q, h) = \int_0^1 c_{q_t}(h_t) dt < \infty$

$\varphi_{t=1}^{\zeta_q(h)}$ is a modular large deformation.

$\varphi_{t=1}^{\zeta_q(h)} \cdot q_0 = q_1$.

$\varphi^{\zeta_q(h)}$ is defined by $(q_{t=0}, h) \in \mathcal{O} \times L^2([0, 1], H)$.
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints
- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints
- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints
- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints
- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

- Modular large deformations
- From a deformation module to a deformation model
Estimating and using deformation constraints

Sub-Riemannian structure on $\mathcal{O} = (\mathcal{O}, H, \zeta, \xi, c)$

$M = (\mathcal{O}, H, \zeta, \xi, c)$

\mathbb{R}^+

\[\mathcal{O} \times H \]

Field generator

Cost c

Controls

Geometrical descriptors

Infinitesimal action

$C^\ell_0(\mathbb{R}^d)$

ζ
Estimating and using deformation constraints

Sub-Riemannian structure on \mathcal{O}

SUB-RIEMANNIAN STRUCTURE ON \mathcal{O}
Proposition

Wet set $\rho : (q, h) \in O \times H \mapsto (q, \xi_q \circ \zeta_q(h)) \in T O$. Then $(O \times H, c, \rho)$ defines a sub-Riemannian structure on O and

$$\text{Dist}(a, b)^2 = \inf \{ \int_0^1 c_q(h) \mid h \in L^2([0, 1], H), \dot{q} = \rho_q(h), q_{t=0} = a, q_{t=1} = b \}$$

Theorem

If $\text{Dist}(a, b) < \infty$ the energy E, there exists $(q, h) \in \Omega$ such that $q_{t=0} = a, q_{t=1} = b$ and $\text{Dist}(a, b) = \sqrt{\int_0^1 c_q(h)}$.

Proposition

Let $M = (\mathcal{O}, H, \zeta, \xi, c)$ be a deformation modules satisfying the UEC and $\mu : \mathcal{O} \hookrightarrow \mathbb{R}^+ \ C^1$. Let $a \in \mathcal{O}$ and

$$J_a : h \in L^2([0, 1], H) \mapsto \int_0^1 c_{q_t}(h_t) \, dt + \mu(q_{t=1}, b)$$

with $q_{t=0} = a$ and (q, h) horizontal. Minimizers of J_a can be parametrized by an element $\eta \in T_{a}^*\mathcal{O}$.
Estimating and using deformation constraints

Applications

Image reconstruction

APPLICATIONS
IMAGE RECONSTRUCTION
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Goal:

- Using I_0 as a prior to reconstruct from data g
- With a user-defined deformation module $M = (O, H, \zeta, \xi, c)$

Strategy: using geodesics parametrized by $(a, \eta) \in T^*_aO$ to transform I_0.

\[
J_{I_0,g}(a, \eta) = \int_0^1 c_{qt}(h_t)dt + \frac{1}{\lambda} D\left(T(\varphi^{\zeta q(h)}_{t=1} \cdot I_0), g \right)
\]

with (q, h) the geodesic parametrized by (a, η).
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction
Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Image reconstruction

[B.G., Incorporation of a deformation prior in image reconstruction (2018)]

Estimating and using deformation constraints

- Applications
- Image reconstruction
Estimating and using deformation constraints

Applications

Studying a population of genes (joint work with L. Mégret)
Huntington disease:

- Caused by an elongated polyglutamin (PolyQ)
- Worsens with size of PolyQ and age

Data: (Mouse allelic series, HDinHD)

- Expression level of genes in mice
- 3 ages and 6 sizes of PolyQ: 18 data points per gene

Goal:

- Study behavior of genes
- Compensation/decompensation

Strategy:

- Each gene is considered as a surface in dimension 3
- Compare 2 surfaces via modular deformations
Estimating and using deformation constraints

- Applications
- Studying a population of genes (joint work with L. Mégret)
Estimating and using deformation constraints

Applications

Studying a population of genes (joint work with L. Mégret)
Estimating and using deformation constraints

Applications

Studying a population of genes (joint work with L. Mégret)
Estimating and using deformation constraints

Applications

Studying a population of genes (joint work with L. Mégret)
Define only $\rho = \xi \circ \zeta$ and approximate

$$\varphi^h \cdot S \simeq S + \rho(S, h_0) \doteq h_0 \cdot S$$

For two surfaces (genes) S_i and S_j,

$$h_{i,j} = \text{argmin}\{C(h) + D(h \cdot S_i, S_j)\}$$

[McVaillant, J. Glaunes. Surface Matching via Currents]

Clustering from $\left(C(h_{i,j})\right)_{i,j}$
Estimating and using deformation constraints

Conclusion

- Geometric study of data
- Structure coming from shapes
- Controls to manage variability
"Is it possible to mechanize human intuitive understanding of biological pictures that typically exhibit a lot of variability but also possess characteristic structure?"

Ulf Grenander

Hands : a Pattern Theoric Study of Biological Shapes, 1991

Questions?