Discontinuous Galerkin finite element methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients

Iain Smears
INRIA Paris

LJLL Seminar, June 2017

joint work with
Endre Süli, University of Oxford
Talk outline

1. **Introduction**: Hamilton–Jacobi–Bellman (HJB) equations.
2. **Analysis**: Analysis of HJB equations with Cordes coefficients.
3. **Numerical methods**: High-order discontinuous Galerkin methods for HJB equations with Cordes coefficients.
Overview

Talk outline

2. *Analysis:* Analysis of HJB equations with Cordes coefficients.
1. Stochastic optimal control

Stochastic differential equation

\[dX_t = b(X_t, \alpha_t) \, dt + \sigma(X_t, \alpha_t) \, dB_t, \quad X_0 = x, \]

Find a control \(\alpha(\cdot) : t \mapsto \alpha_t \in \Lambda \) that minimises

\[J(x, \alpha(\cdot)) = \mathbb{E} \left[\int_0^{\tau_{\text{exit}}} f(X_t, \alpha_t) \, e^{-\int_0^t c(X_s, \alpha_s) \, ds} \, dt \right] \]

- \(b(x, \alpha) \in \mathbb{R}^d \) drift, \(\sigma(x, \alpha) \in \mathbb{R}^{d \times m} \) volatility
- scalar \(f \) and \(c \) : running cost and discount
- \(\alpha_t \) control variable
- \(\Lambda \) controls set (assumed to be a compact metric space).
- stopping time \(\tau_{\text{exit}} \): first exit from bounded domain \(\Omega \subset \mathbb{R}^d \)

Example applications: energy, engineering, finance . . .
1. Dynamic programming principle

The dynamic programming principle (DPP) is a solution process for a stochastic control problem.

Overview: stages of DPP

1. Define the \textit{value function} of the optimal control problem.

2. DPP: the value function is the solution of an HJB equation.

3. The optimal controls can be computed once the value function is available.

Richard Bellman (1920–1984)

Feedback control map \(\alpha_{\text{feedback}} : \Omega \to \Lambda \implies \alpha(t) := \alpha_{\text{feedback}}(X_t). \)
1. Dynamic programming principle

Details in Fleming & Soner 2006

• Define the value function V defined by

$$V(x) := \inf \{ J(x, \alpha(\cdot)) \mid \alpha(\cdot): t \in [0, \infty) \mapsto \alpha_t \in \Lambda, \alpha(\cdot) \in \mathcal{A} \}.$$

$\mathcal{A} = \text{set of admissible controls}:$ progressively measurable w.r.t. filtration.

• The function $u := -V$ solves the HJB equation

$$\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

(HJB)

where $L^\alpha u := a^\alpha(x) : D^2 u + b^\alpha(x) \cdot \nabla u - c^\alpha(x) u,$ with

$$a^\alpha(x) := \frac{1}{2} \sigma(x, \alpha) \sigma^T(x, \alpha) \in \mathbb{R}^{d \times d},$$

Notation: $a^\alpha : D^2 u = \sum_{i,j=1}^d a^\alpha_{ij}(x) u_{x_i x_j}$
1. Dynamic programming principle

Details in Fleming & Soner 2006

- Define the value function V defined by

$$V(x) := \inf \{ J(x, \alpha(\cdot)) \mid \alpha(\cdot): t \in [0, \infty) \mapsto \alpha_t \in \Lambda, \alpha(\cdot) \in \mathcal{A} \}.$$

\(\mathcal{A} = \text{set of admissible controls: progressively measurable w.r.t. filtration.}\)

- The function $u := -V$ solves the HJB equation

$$\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0 \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega,$$

(HJB)

where $L^\alpha u := a^\alpha(x) : D^2 u + b^\alpha(x) \cdot \nabla u - c^\alpha(x) u,$ with

$$a^\alpha(x) := \frac{1}{2} \sigma(x, \alpha) \sigma^\top(x, \alpha) \in \mathbb{R}^{d \times d},$$

Notation: $a^\alpha : D^2 u = \sum_{i,j=1}^{d} a^\alpha_{ij}(x) u_{x_i x_j},$
1. Hamilton–Jacobi–Bellman Equation

Elliptic Dirichlet problem:

\[\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0 \quad \text{in } \Omega, \]

u = 0 \quad \text{on } \partial \Omega,

(Elliptic HJB)

where \(L^\alpha u := a^\alpha(x) : D^2 u + b^\alpha(x) \cdot \nabla u - c^\alpha(x) u. \)

Notation:

\[a^\alpha(x) : D^2 u = \sum_{i,j=1}^{d} a_{ij}^\alpha(x) u_{x_i x_j}, \quad b^\alpha(x) \cdot \nabla u = \sum_{i=1}^{d} b_i^\alpha(x) u_{x_i}. \]

Assumptions in this talk:

- \(\Omega \subset \mathbb{R}^d \) is bounded and convex, \(\Lambda \) a compact metric space.
- \(a, b, c \) and \(f \) are continuous functions in \(x \in \overline{\Omega}, \alpha \in \Lambda. \)
- \(a^\alpha \) are symmetric positive definite, uniformly on \(\overline{\Omega} \times \Lambda, \) and \(c^\alpha \geq 0. \)
- Cordes coefficients: the coefficient functions \(a, b, c \) satisfy the Cordes condition (coming soon!)
1. Examples

How do HJB equations relate to other PDEs?

$$\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0$$

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations

 $$a : D^2 u + b \cdot \nabla u - cu = f,$$
 (assume that Λ is a singleton set).

- Hamilton–Jacobi: e.g. eikonal equation

 $$\sup_{\alpha \in S^d} [\alpha \cdot \nabla u - 1] = |\nabla u| - 1 = 0.$$

- Monge–Ampère equation [Krylov 1987, Jensen & Feng 2017]

 \[
 \begin{cases}
 \det D^2 u - f = 0 \\
 u \text{ convex}
 \end{cases}
 \iff
 \inf_{a \in \mathbb{R}^{d \times d}_{\text{sym,}+}, \text{Tr} a = 1} \left[a : D^2 u - d (f \det a)^{1/d} \right] = 0.
 \]
1. Examples

How do HJB equations relate to other PDEs?

\[\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0 \]

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations
 \[a : D^2 u + b \cdot \nabla u - cu = f, \quad (\text{assume that } \Lambda \text{ is a singleton set}). \]

- Hamilton–Jacobi: e.g. eikonal equation
 \[\sup_{\alpha \in \mathbb{S}^d} [\alpha \cdot \nabla u - 1] = |\nabla u| - 1 = 0. \]

- Monge–Ampère equation [Krylov 1987, Jensen & Feng 2017]
 \[\begin{cases} \det D^2 u - f = 0 \\ u \text{ convex} \end{cases} \iff \inf_{a \in \mathbb{R}^{d \times d}_{\text{sym}},+} \left[a : D^2 u - d (f \det a)^{1/d} \right] \geq 0. \]
1. Examples

How do HJB equations relate to other PDEs?

\[
\sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0
\]

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations
 \[
a : D^2 u + b \cdot \nabla u - cu = f, \quad \text{(assume that } \Lambda \text{ is a singleton set).}
 \]

- Hamilton–Jacobi: e.g. eikonal equation
 \[
 \sup_{\alpha \in \mathbb{S}^d} [\alpha \cdot \nabla u - 1] = |\nabla u| - 1 = 0.
 \]

- Monge–Ampère equation [Krylov 1987, Jensen & Feng 2017]
 \[
 \begin{cases}
 \det D^2 u - f = 0 \\
 u \text{ convex}
 \end{cases}
 \iff
 \inf_{a \in \mathbb{R}_{sym,+}^{d \times d}, \text{Tr } a = 1} \left[a : D^2 u - d (f \det a)^{1/d} \right] = 0.
 \]
1. Approaches

What are the available approaches to PDE theory and numerical discretization?

- **Weak solutions in** $H^1(\Omega)$: not applicable!
 - → most existing finite element techniques cannot be used!
- **Viscosity solutions**: generally applicable, even to degenerate elliptic problems. Solution space $u \in C(\Omega)$.
 - This leads to *monotone numerical schemes* (c.f. next few slides) . . .
- **Strong solutions in** $H^2(\Omega)$: under the Cordes condition . . .
- Classical solutions in $C^2(\Omega)$: Evans–Krylov Theorem and its developments guarantee interior regularity estimates for the viscosity solution under uniform ellipticity and data regularity assumptions.

Some references:
- Weak, strong and classical solutions
- Viscosity solutions for fully nonlinear PDE
- Regularity theory of viscosity solutions
1. Approaches

What are the available approaches to PDE theory and numerical discretization?

- **Weak solutions** in $H^1(\Omega)$: not applicable!
 - \rightarrow most existing finite element techniques cannot be used!

- **Viscosity solutions**: generally applicable, even to degenerate elliptic problems. Solution space $u \in C(\overline{\Omega})$.
 - This leads to *monotone numerical schemes* (c.f. next few slides)...

- **Strong solutions** in $H^2(\Omega)$: under the Cordes condition ...

- Classical solutions in $C^2(\Omega)$: Evans–Krylov Theorem and its developments guarantee interior regularity estimates for the viscosity solution under uniform ellipticity and data regularity assumptions.

Some references:

1. Approaches

What are the available approaches to PDE theory and numerical discretization?

- **Weak solutions in** $H^1(\Omega)$: not applicable!
 - \rightarrow most existing finite element techniques cannot be used!

- **Viscosity solutions**: generally applicable, even to degenerate elliptic problems. Solution space $u \in C(\overline{\Omega})$.
 - This leads to *monotone numerical schemes* (c.f. next few slides)…

- **Strong solutions in** $H^2(\Omega)$: under the Cordes condition …

- Classical solutions in $C^2(\Omega)$: Evans–Krylov Theorem and its developments guarantee interior regularity estimates for the viscosity solution under uniform ellipticity and data regularity assumptions.

Some references:

- Weak, strong and classical solutions
 Gilbarg & Trudinger, 1998.

- Viscosity solutions for fully nonlinear PDE
 Crandall, Lions & Ishii, 1992.

- Regularity theory of viscosity solutions
 Caffarelli & Cabré, 1995.
1. Approaches

What are the available approaches to PDE theory and numerical discretization?

- **Weak solutions in** $H^1(\Omega)$: not applicable!
 - \rightarrow most existing finite element techniques cannot be used!

- **Viscosity solutions**: generally applicable, even to degenerate elliptic problems. Solution space $u \in C(\overline{\Omega})$.
 - This leads to *monotone numerical schemes* (c.f. next few slides)...

- **Strong solutions in** $H^2(\Omega)$: under the Cordes condition ...

- Classical solutions in $C^2(\Omega)$: Evans–Krylov Theorem and its developments guarantee interior regularity estimates for the viscosity solution under uniform ellipticity and data regularity assumptions.

Some references:

- Weak, strong and classical solutions

- Viscosity solutions for fully nonlinear PDE

- Regularity theory of viscosity solutions
1. Literature

Pre-existing numerical methods:

- **Monotone methods:** low-order methods with discrete maximum principles:
 - mostly finite difference methods: Motzkin & Wasow, Kuo & Trudinger, Kocan, Camilli & Falcone, Barles & Jakobsen, Jakobsen & Debrabant, Fleming & Soner, Bonnans & Zidani, ...

- **Other pre-existing non-monotone methods** without discrete maximum principles, without convergence theory: Feng, Neilan, Glowinski, Brenner, Lakkis, Pryer, ... [Feng et al. SIAM Rev. 2013].

Is it possible to have stable, consistent and convergent methods for fully nonlinear PDEs without discrete maximum principles?
1. Literature

Pre-existing numerical methods:

• Monotone methods: low-order methods with discrete maximum principles:
 ◦ mostly finite difference methods: Motzkin & Wasow, Kuo & Trudinger, Kocan, Camilli & Falcone, Barles & Jakobsen, Jakobsen & Debrabant, Fleming & Soner, Bonnans & Zidani,…
 ◦ a few on monotone FEM: Jensen & S., SINUM 2013 and Nochetto & Zhang FOCM 2016.

• Other pre-existing non-monotone methods without discrete maximum principles, without convergence theory: Feng, Neilan, Glowinski, Brenner, Lakkis, Pryer, … [Feng et al. SIAM Rev. 2013].

Is it possible to have stable, consistent and convergent methods for fully nonlinear PDEs without discrete maximum principles?
Overview

Talk outline

2. *Analysis*: Analysis of HJB equations with Cordes coefficients.
 - Motivation of Cordes coefficients
 - Existence, Uniqueness, Well-posedness

2. PDE Theory: motivation

Cordes introduced his condition in the context of nondivergence form equations with discontinuous coefficients.

There is a link between HJB equations and nondivergence form equations with discontinuous coefficients:

Classical solution algorithm: policy iteration, due to Howard and Bellman:

1. Choose an initial guess u^0.

2. For $k \in \mathbb{N}$, given a current guess u^k, choose $\alpha_k : \Omega \to \Lambda$, a Lebesgue-measurable selection

\[\alpha_k(x) \in \arg\max_{\alpha \in \Lambda} (L^\alpha u^k - f^\alpha)(x), \quad \forall x \in \Omega. \]

3. Then, find u^{k+1} as a solution of the PDE

\[L^\alpha_k u^{k+1} = f^\alpha_k \quad \text{in } \Omega, \quad \text{with } u^{k+1} = 0 \text{ on } \partial\Omega, \]

where $f^\alpha_k : x \mapsto f^\alpha_k(x)(x)$, etc.

Howard 1960, Puterman & Brumelle 1979, Bokanowski et al. 2009, ...
2. PDE Theory: motivation

Cordes introduced his condition in the context of nondivergence form equations with discontinuous coefficients.

There is a link between HJB equations and nondivergence form equations with discontinuous coefficients:

Classical solution algorithm: policy iteration, due to Howard and Bellman:

1. Choose an initial guess u^0.

2. For $k \in \mathbb{N}$, given a current guess u^k, choose $\alpha_k : \Omega \to \Lambda$, a Lebesgue-measurable selection

\[\alpha_k(x) \in \arg\max_{\alpha \in \Lambda} \left(L^\alpha u^k - f^\alpha \right)(x), \quad \forall x \in \Omega. \]

3. Then, find u^{k+1} as a solution of the PDE

\[L^{\alpha_k} u^{k+1} = f^{\alpha_k} \quad \text{in } \Omega, \quad \text{with } u^{k+1} = 0 \text{ on } \partial\Omega, \]

where $f^{\alpha_k} : x \mapsto f^{\alpha_k}(x)(x)$, etc.

Howard 1960, Puterman & Brumelle 1979, Bokanowski et al. 2009, ...
2. PDE Theory: motivation

Linearized equation:

\[L^{\alpha_k} u^{k+1} = f^{\alpha_k} \quad \text{in } \Omega, \quad \text{with } u^{k+1} = 0 \text{ on } \partial \Omega, \quad (1) \]

Question: is Eq. (1) a well-posed PDE?

In general, the answer is no: the linearization process (esp. the argmax) leads to discontinuous diffusion coefficients: \(a^{\alpha_k} \in L^\infty(\Omega)^{d \times d} \) and \(a^{\alpha_k} \notin C(\Omega)^{d \times d} \).

• Calderon–Zygmund: If \(a \in C(\Omega)^{d \times d} \) and \(\partial \Omega \in C^{1,1} \), then existence and uniqueness in \(W^{2,p} \) [Gilbarg & Trudinger, 1998]

• If \(a \in L^\infty(\Omega)^{d \times d} \), \(a \notin C(\Omega)^{d \times d} \), then there are counter-examples showing non-uniqueness in general (Maugeri et al, 2000):

\[\Delta u + \rho \sum_{i,j=1}^{d} \frac{x_i x_j}{|x|^2} u_{x_i} x_j = 0 \text{ in } B \text{ unit ball,} \quad \rho = -1 + \frac{d-1}{1-\theta}, \quad 0 < \theta < 1, \]

If \(d \geq 3 \) and \(d > 2(2 - \theta) > 2 \), two solutions in \(H^2(B) \cap H^1_0(B) \)

\[u_1(x) = 0 \quad \text{and} \quad u_2(x) = |x|^\theta - 1 \]
2. PDE Theory: motivation

Linearized equation:

\[L^{\alpha_k} u^{k+1} = f^{\alpha_k} \quad \text{in } \Omega, \quad \text{with } u^{k+1} = 0 \text{ on } \partial \Omega, \quad (1) \]

Question: is Eq. (1) a well-posed PDE?

In general, the answer is *no*: the linearization process (esp. the argmax) leads to discontinuous diffusion coefficients: \(a^{\alpha_k} \in L^\infty(\Omega)^{d \times d} \) and \(a^{\alpha_k} \notin C(\Omega)^{d \times d} \).

- **Calderon–Zygmund:** If \(a \in C(\Omega)^{d \times d} \) and \(\partial \Omega \in C^{1,1} \), then existence and uniqueness in \(W^{2,p} \) [Gilbarg & Trudinger, 1998]

- If \(a \in L^\infty(\Omega)^{d \times d}, \ a \notin C(\Omega)^{d \times d} \), then there are counter-examples showing non-uniqueness in general (Maugeri et al, 2000):

\[
\Delta u + \rho \sum_{i,j=1}^{d} \frac{x_i x_j}{|x|^2} u_{x_i x_j} = 0 \quad \text{in } B \text{ unit ball}, \quad \rho = -1 + \frac{d - 1}{1 - \theta}, \quad 0 < \theta < 1,
\]

If \(d \geq 3 \) and \(d > 2(2 - \theta) > 2 \), two solutions in \(H^2(B) \cap H^1_0(B) \)

\[u_1(x) = 0 \quad \text{and} \quad u_2(x) = |x|^\theta - 1 \]
2. PDE theory: Cordes condition

Cordes condition: *Case 1: without advection and reaction*

Assume that there exists \(\varepsilon \in (0, 1] \) s. t.

\[
\frac{|a(x)|^2}{(\text{Tr } a(x))^2} \leq \frac{1}{d - 1 + \varepsilon} \quad \text{a.e. } x \in \Omega,
\]

(Cordes\(_0\))

Theorem (Cordes, 1956)

*If \(\Omega \) is convex, and if \(a \in L^\infty(\Omega)^{d \times d} \) unif. ellipt. satisfies (Cordes\(_0\)), then for any \(f \in L^2(\Omega) \) there exists a unique \(u \in H^2(\Omega) \cap H^1_0(\Omega) \) solving

\[
a : D^2 u = f \quad \text{in } \Omega, \quad \text{with } u = 0 \text{ on } \partial \Omega,
\]

Example

If dimension \(d = 2 \), (Cordes\(_0\)) \iff uniform ellipticity.
2. PDE theory: Cordes condition

Cordes condition: *Case 1: without advection and reaction*

Assume that there exists $\varepsilon \in (0, 1]$ s. t.

$$\frac{|a^\alpha(x)|^2}{(\text{Tr } a^\alpha(x))^2} \leq \frac{1}{d - 1 + \varepsilon} \quad \text{a.e. } x \in \Omega, \alpha \in \Lambda$$ \hspace{1cm} (2)

Theorem (Cordes, 1956)

If Ω is convex, and if $a^\alpha \in L^\infty(\Omega)^{d \times d}$ unif. ellipt. satisfies (Cordes$_0$), then for any $f \in L^2(\Omega)$ there exists a unique $u \in H^2(\Omega) \cap H^1_0(\Omega)$ solving

$$a^\alpha : D^2 u = f \quad \text{in } \Omega, \quad \text{with } u = 0 \text{ on } \partial \Omega,$$

Example

If dimension $d = 2$, (Cordes$_0$) \iff *uniform ellipticity.*
2. PDE theory: Cordes condition

Cordes condition: Case 2: extension to $b^\alpha \neq 0$ and $c^\alpha \neq 0$

Assume that there exist $\lambda > 0$ and $\varepsilon \in (0, 1]$ s. t.

\[
\frac{|a^\alpha|^2 + |b^\alpha|^2/2\lambda + (c^\alpha/\lambda)^2}{(\text{Tr } a^\alpha + c^\alpha/\lambda)^2} \leq \frac{1}{d + \varepsilon} \quad \text{in } \Omega, \ \forall \alpha \in \Lambda. \quad (\text{Cordes}_1)
\]
2. PDE theory: well-posedness

Theorem (Strong solutions of HJB equations with Cordes coefficients)

Let \(\Omega \) be a bounded convex open subset of \(\mathbb{R}^d \), and let \(\Lambda \) be a compact metric space.

Let the data be continuous on \(\overline{\Omega} \times \Lambda \), and satisfy (Cordes\(_1\)) with uniformly elliptic \(a^\alpha \) and \(c^\alpha \geq 0 \) for all \(\alpha \in \Lambda \).

Then, there exists a unique \(u \in H^2(\Omega) \cap H^1_0(\Omega) \) that solves (Elliptic HJB) pointwise a.e. in \(\Omega \).

2. PDE theory: proof of well-posedness

Define

\[\gamma^\alpha := \frac{\text{Tr } a^\alpha + c^\alpha/\lambda}{|a^\alpha|^2 + |b^\alpha|^2/2\lambda + (c^\alpha/\lambda)^2} \]

\[F_{\gamma}[u] := \sup_{\alpha \in \Lambda} \left[\gamma^\alpha (L^\alpha u - f^\alpha) \right] \]

Because \(\gamma^\alpha > 0 \), we can renormalize the operator:

\[F_{\gamma}[u] = \sup_{\alpha \in \Lambda} \left[\gamma^\alpha (L^\alpha u - f^\alpha) \right] = 0 \iff \sup_{\alpha \in \Lambda} [L^\alpha u - f^\alpha] = 0. \quad (3) \]

The problem (Elliptic HJB) for \(u \in H^2(\Omega) \cap H^1_0(\Omega) \) is equivalent to

\[A(u; v) := \int_{\Omega} F_{\gamma}[u] L_\lambda v \, dx = 0 \quad \forall \ v \in H^2(\Omega) \cap H^1_0(\Omega), \quad (4) \]

where \(L_\lambda v := \Delta v - \lambda v \).
Let $H := H^2(\Omega) \cap H_0^1(\Omega)$, $\|v\|_H^2 := \|D^2 u\|^2 + 2\lambda \|\nabla u\|^2 + \lambda^2 \|u\|^2$

1. $A : H \times H \to \mathbb{R}$ is linear in its second argument (only).

2. A is Lipschitz continuous: there is $C > 0$ such that
 \[|A(u; v) - A(w; v)| \leq C \|u - w\|_H \|v\|_H \quad \forall u, v, w \in H, \]

3. We now show that A is strongly monotone\(^1\): there exists a positive constant $c = c(\varepsilon) > 0$ such that
 \[\frac{1}{c} \|u - v\|_H^2 \leq A(u; u - v) - A(v; u - v) \quad \forall u, v \in H. \]

On verifying these conditions, we conclude that there exists a unique $u \in H$ that solves $A(u; v) = 0$ for all $v \in H$ and thus solves (Elliptic HJB).

\(^1\)Remark: must not confuse monotone schemes (i.e. discrete max principle) with strongly monotone operators in functional analytic sense.
Notation: $H := H^2(Ω) \cap H^1_0(Ω)$, $\|v\|_H^2 := \|D^2 u\|^2 + 2\lambda \|\nabla u\|^2 + \lambda^2 \|u\|^2$

Key ingredients

1. **The Cordes condition**, which implies by direct calculation that

$$\|F_\gamma [u] - F_\gamma [v] - L_\lambda (u - v)\|_L^2 \leq \sqrt{1 - \varepsilon} \|u - v\|_H$$ \hspace{1cm} (6)

2. **Miranda–Talenti**: for convex $Ω$,

$$\|w\|_H \leq \|L_\lambda w\|_L^2 \quad \forall \ w \in H^2(Ω) \cap H^1_0(Ω)$$ \hspace{1cm} (7)

where $L_\lambda v := \Delta v - \lambda v$ (recall $\lambda > 0$)

Maugeri, Palagachev & Softova, 2000, and Grisvard 1985
2. PDE theory: proof of well-posedness

\[\| F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v) \|_{L^2} \leq \sqrt{1 - \varepsilon} \| u - v \|_H, \quad \| v \|_H \leq \| L_\lambda v \|_{L^2} \]

Strong monotonicity:
Recall \(\mathcal{A}(u; v) = \int_{\Omega} F_\gamma[u] L_\lambda v \, dx \).

\[
\mathcal{A}(u; u - v) - \mathcal{A}(v; u - v) = \int_{\Omega} (F_\gamma[u] - F_\gamma[v]) L_\lambda(u - v) \, dx.
\]

Addition–subtraction of \(\| L_\lambda(u - v) \|_{L^2}^2 \) gives

\[
\mathcal{A}(u; u - v) - \mathcal{A}(v; u - v) = \| L_\lambda(u - v) \|_{L^2}^2
+ \int_{\Omega} (F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v)) L_\lambda(u - v) \, dx
\geq -\sqrt{1 - \varepsilon} \| u - v \|_H \| L_\lambda(u - v) \|_{L^2} \geq -\sqrt{1 - \varepsilon} \| L_\lambda(u - v) \|_{L^2}^2
\]

Therefore

\[
\mathcal{A}(u; u - v) - \mathcal{A}(v; u - v) \geq (1 - \sqrt{1 - \varepsilon}) \| L_\lambda(u - v) \|_{L^2}^2 \geq (1 - \sqrt{1 - \varepsilon}) \| u - v \|_H^2
\]
2. PDE theory: proof of well-posedness

\[\| F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v) \|_{L^2} \leq \sqrt{1 - \varepsilon} \| u - v \|_H, \quad \| v \|_H \leq \| L_\lambda v \|_{L^2} \]

Strong monotonicity:
Recall \(A(u; v) = \int_\Omega F_\gamma[u] L_\lambda v dx. \)

\[
A(u; u - v) - A(v; u - v) = \int_\Omega (F_\gamma[u] - F_\gamma[v]) L_\lambda(u - v) \, dx.
\]

Addition–subtraction of \(\| L_\lambda(u - v) \|_{L^2}^2 \) gives

\[
A(u; u - v) - A(v; u - v) = \| L_\lambda(u - v) \|_{L^2}^2
\]

\[
+ \int_\Omega (F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v)) L_\lambda(u - v) \, dx
\]

\[
\geq -\sqrt{1 - \varepsilon} \| u - v \|_H \| L_\lambda(u - v) \|_{L^2} \geq -\sqrt{1 - \varepsilon} \| L_\lambda(u - v) \|_{L^2}^2
\]

Therefore

\[
A(u; u - v) - A(v; u - v) \geq (1 - \sqrt{1 - \varepsilon}) \| L_\lambda(u - v) \|_{L^2}^2 \geq (1 - \sqrt{1 - \varepsilon}) \| u - v \|_H^2
\]
2. PDE theory: proof of well-posedness

\[\|F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v)\|_{L^2} \leq \sqrt{1 - \varepsilon}\|u - v\|_H, \quad \|v\|_H \leq \|L_\lambda v\|_{L^2} \]

Strong monotonicity:
Recall \(A(u; v) = \int_\Omega F_\gamma[u]L_\lambda v dx. \)

\[A(u; u - v) - A(v; u - v) = \int_\Omega (F_\gamma[u] - F_\gamma[v]) L_\lambda (u - v) dx. \]

Addition–subtraction of \(\|L_\lambda(u - v)\|_{L^2}^2 \) gives

\[A(u; u - v) - A(v; u - v) = \|L_\lambda(u - v)\|_{L^2}^2 \]

\[\quad + \int_\Omega (F_\gamma[u] - F_\gamma[v] - L_\lambda(u - v)) L_\lambda(u - v) dx \]

\[\geq -\sqrt{1 - \varepsilon}\|u - v\|_H\|L_\lambda(u - v)\|_{L^2} \geq -\sqrt{1 - \varepsilon}\|L_\lambda(u - v)\|_{L^2}^2 \]

Therefore

\[A(u; u - v) - A(v; u - v) \geq (1 - \sqrt{1 - \varepsilon})\|L_\lambda(u - v)\|_{L^2}^2 \geq (1 - \sqrt{1 - \varepsilon})\|u - v\|_H^2 \]
2. PDE theory

Approach to numerical analysis:

Since the proof of well-posedness hinges on the strong monotonicity of

$$A(u; v) = \int_{\Omega} F_\gamma[u] L_\lambda v \, dx,$$

we will attempt to discretise the operator A and conserve its strong monotonicity.

- The Cordes condition carries over straightforwardly to discrete setting
- The Miranda–Talenti inequality does not carry over if the approximation space is not inside $H^2(\Omega) \cap H^1_0(\Omega)$.
Overview

Talk outline

2. *Analysis*: Analysis of HJB equations with Cordes coefficients.

 - Design of a consistent, stable and convergent method
 - Error bounds
 - Extension to parabolic problems
 - Numerical experiments
3. Numerics: design of the method

Let \(\{T_h\}_h \) a shape-regular sequence of meshes on \(\Omega \).

- Elements composing the mesh can be parallelepipeds, simplices, or more generally any combination of standard elements.
- The mesh is *not assumed to be quasi-uniform* (very useful for \(hp \)-refinement).
- Hanging nodes allowed.
3. Numerics: design of the method

Construction of the discontinuous finite element space

Discontinuous finite element space:

\[V_{h,p} := \{ v_h \in L^2(\Omega) : v_h|_K \in \mathcal{P}_{p_K}(K) \ \forall K \in \mathcal{T}_h \}. \]

Polynomial degrees \(p = (p_K)_{K \in \mathcal{T}_h} \)

Approximation in \(H^2 \) requires \(p_K \geq 2 \) for all elements \(K \).
3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

\[\begin{align*}
 &F_{\text{int}} \\
 &F_{\text{ext}} \\
 &F_{\text{int}} \quad n_F \\
 &F_{\text{ext}}
\end{align*} \]

Distinguish interior and boundary faces

\[\mathcal{F}_h^i \text{ interior faces of } \mathcal{T}_h, \quad \mathcal{F}_h^b \text{ boundary faces of } \mathcal{T}_h, \]

\[\mathcal{F}_h^{i,b} := \mathcal{F}_h^i \cup \mathcal{F}_h^b. \]

Jump operators over faces:

\[\begin{align*}
 [\phi] &:= \tau_F (\phi|_{K_{\text{ext}}}) - \tau_F (\phi|_{K_{\text{int}}}), \quad \{\phi\} := \frac{1}{2} \tau_F (\phi|_{K_{\text{ext}}}) + \frac{1}{2} \tau_F (\phi|_{K_{\text{int}}}), & \text{if } F \in \mathcal{F}_h^i, \\
 [\phi] &:= \tau_F (\phi|_{K_{\text{ext}}}), \quad \{\phi\} := \tau_F (\phi|_{K_{\text{ext}}}), & \text{if } F \in \mathcal{F}_h^b,
\end{align*} \]
3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

Let \(\{ t_i \}_{i=1}^{d-1} \subset \mathbb{R}^d \) be an orthonormal coordinate system on \(F \). Define the **tangential gradient and divergence**

\[
\nabla_T u := \sum_{i=1}^{d-1} t_i \frac{\partial u}{\partial t_i}, \quad \text{div}_T \mathbf{v} := \sum_{i=1}^{d-1} \frac{\partial \mathbf{v}_i}{\partial t_i}.
\]
3. Numerics: design of the method

The goal is to discretise

\[\mathcal{A}(u; v) = \int_\Omega F_\gamma[u] L_\lambda v \, dx, \]

whilst conserving the strong monotonicity bound.

Recall main ingredients:

1. The Cordes condition remains unchanged in discrete setting.

2. Miranda–Talenti inequality: not conserved when replacing \(H^2(\Omega) \cap H^1_0(\Omega) \) by \(V_{h,p} \).

Our approach:

• Miranda–Talenti inequality was derived from an integration by parts identity (Maugeri et al 2000, Grisvard 1984)

• We will include a discrete weak form of this identity in the scheme (next slide)
3. Numerics: design of the method

Numerical scheme: find $u_h \in V_{h,p}$ such that

$$A_h(u_h; v_h) = 0 \quad \forall \, v_h \in V_{h,p}.$$
(scheme)

$$A_h(u_h; v_h) := \sum_{K \in T_h} \langle F_\gamma[u_h], L_\lambda v_h \rangle_K + J_h(u_h, v_h)$$

$$+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in T_h} \langle L_\lambda u_h, L_\lambda v_h \rangle_K \right).$$
3. Numerics: design of the method

Numerical scheme: find \(u_h \in V_{h,p} \) such that

\[
A_h(u_h; v_h) = 0 \quad \forall \, v_h \in V_{h,p}. \tag{scheme}
\]

\[
A_h(u_h; v_h) := \sum_{K \in T_h} \langle F_\gamma[u_h], L_\lambda v_h \rangle_K + J_h(u_h, v_h)
\]

\[
+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in T_h} \langle L_\lambda u_h, L_\lambda v_h \rangle_K \right).
\]

\[
\langle F_\gamma[u_h], L_\lambda v_h \rangle_K := \int_K \sup_{\alpha \in \Lambda} \left[\gamma^\alpha (L^\alpha u_h - f^\alpha) \right] (\Delta v_h - \lambda v_h) \, dx.
\]
3. Numerics: design of the method

Numerical scheme: find $u_h \in V_{h,p}$ such that

$$A_h(u_h; v_h) = 0 \quad \forall \, v_h \in V_{h,p}. \quad \text{(scheme)}$$

$$A_h(u_h; v_h) := \sum_{K \in T_h} \langle F_\gamma[u_h], L_\lambda v_h \rangle_K + J_h(u_h, v_h)$$

$$+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in T_h} \langle L_\lambda u_h, L_\lambda v_h \rangle_K \right).$$

Jump penalisation with $\mu_F \simeq p_k^2/h_K$ and $\eta_F \simeq p_k^4/h_K^3$ for $F \subset \partial K$:

$$J_h(u_h, v_h) := \sum_{F \in \mathcal{F}_h} \left[\mu_F \langle \left[\nabla_T u_h \right], \left[\nabla_T v_h \right] \rangle_F + \eta_F \langle \left[u_h \right], \left[v_h \right] \rangle_F \right]$$

$$+ \sum_{F \in \mathcal{F}_h} \mu_F \langle \left[\nabla u_h \cdot n_F \right], \left[\nabla v_h \cdot n_F \right] \rangle_F.$$
3. Numerics: design of the method

Numerical scheme: find $u_h \in V_{h,p}$ such that

$$A_h(u_h; v_h) = 0 \quad \forall v_h \in V_{h,p}. \quad \text{(scheme)}$$

$$A_h(u_h; v_h) := \sum_{K \in T_h} \langle F_\gamma[u_h], L_\lambda v_h \rangle_K + J_h(u_h, v_h)$$

$$+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in T_h} \langle L_\lambda u_h, L_\lambda v_h \rangle_K \right).$$

$$\langle L_\lambda u_h, L_\lambda v_h \rangle_K := \int_K (\Delta u_h - \lambda u_h)(\Delta v_h - \lambda v_h) \, dx.$$
3. Numerics: design of the method

Numerical scheme: find $u_h \in \mathcal{V}_{h,p}$ such that

$$A_h(u_h; v_h) = 0 \quad \forall v_h \in \mathcal{V}_{h,p}.$$ \hspace{1cm} \text{(scheme)}

$$A_h(u_h; v_h) := \sum_{K \in \mathcal{T}_h} \langle \mathcal{F}_\gamma[u_h], L\lambda v_h \rangle_K + J_h(u_h, v_h)$$

$$+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in \mathcal{T}_h} \langle L\lambda u_h, L\lambda v_h \rangle_K \right).$$

$$B_h(u_h, v_h) := \sum_{K \in \mathcal{T}_h} \left[\langle D^2 u_h, D^2 v_h \rangle_K + 2\lambda \langle \nabla u_h, \nabla v_h \rangle_K + \lambda^2 \langle u_h, v_h \rangle_K \right]$$

$$+ \sum_{F \in \mathcal{F}_h^i} \left[\langle \text{div}_T \nabla_T \{u_h\}, \llbracket \nabla v_h \cdot n_F \rrbracket_F \rangle_F + \langle \text{div}_T \nabla_T \{v_h\}, \llbracket \nabla u_h \cdot n_F \rrbracket_F \rangle_F \right]$$

$$- \sum_{F \in \mathcal{F}_h^{i,b}} \left[\langle \nabla_T \{\nabla u_h \cdot n_F\}, \llbracket \nabla_T v_h \rrbracket_F \rangle_F + \langle \nabla_T \{\nabla v_h \cdot n_F\}, \llbracket \nabla_T u_h \rrbracket_F \rangle_F \right]$$

$$- \lambda \sum_{F \in \mathcal{F}_h^i \setminus b} \langle \{\nabla u_h \cdot n_F\}, \llbracket v_h \rrbracket_F \rangle_F + \langle \{\nabla v_h \cdot n_F\}, \llbracket u_h \rrbracket_F \rangle_F - \lambda \sum_{F \in \mathcal{F}_h^i} \langle \{u_h\}, \llbracket \nabla v_h \cdot n_F \rrbracket_F \rangle_F + \langle \{v_h\}, \llbracket \nabla u_h \cdot n_F \rrbracket_F \rangle_F.$$
3. Numerics: design of the method

Numerical scheme: find \(u_h \in V_{h,p} \) such that

\[
A_h(u_h; v_h) = 0 \quad \forall \ v_h \in V_{h,p}.
\]

(scheme)

\[
A_h(u_h; v_h) := \sum_{K \in \mathcal{T}_h} \langle F_\gamma[u_h], L_\lambda v_h \rangle_K + J_h(u_h, v_h)
\]

\[
+ \frac{1}{2} \left(B_h(u_h, v_h) - \sum_{K \in \mathcal{T}_h} \langle L_\lambda u_h, L_\lambda v_h \rangle_K \right).
\]

Key consistency result: If \(u \in H^2(\Omega) \cap H^1_0(\Omega) \) has well-defined second derivative traces on faces \(F \) of the mesh, then

\[
B_h(u, v_h) = \sum_K \langle L_\lambda u, L_\lambda v_h \rangle_K, \quad J_h(u, v_h) = 0 \quad \forall \ v_h \in V_{h,p}.
\]

Technical point: a sufficient condition is that \(u \in H^s(K) \) with \(s > 5/2 \) for every \(K \in \mathcal{T}_h \).
3. Numerics: consistency, stability and error bounds

Numerical scheme: find \(u_h \in V_{h,p} \) such that

\[
A_h(u_h; v_h) = 0 \quad \forall v_h \in V_{h,p}.
\]

(scheme)

Full theoretical justification given in [S. & S"uli, SINUM 2014]:

- **Consistency Theorem:** sufficiently regular solution of (Elliptic HJB) solves:

\[
A_h(u; v_h) = 0 \quad \forall v_h \in V_{h,p}.
\]

- **Discrete Stability Theorem:** Existence & uniqueness of numerical solution since the nonlinear form \(A_h \) is strongly monotone: provided \(\mu_F \gtrsim p^2/h \) and \(\eta_F \gtrsim p^2/h \)

\[
\| u_h - v_h \|_h^2 \lesssim A_h(u_h; u_h - v_h) - A_h(v_h; u_h - v_h) \quad \forall u_h, v_h \in V_{h,p},
\]

where

\[
\| v_h \|_h^2 := \sum_{K \in T_h} \left[|v_h|_{H^2(K)}^2 + 2\lambda |v_h|_{H^1(K)}^2 + \lambda^2 \| v_h \|_{L^2(K)}^2 \right] + J_h(v_h, v_h)
\]

- **Consistency+Stability \(\implies \) error bounds and convergence.**
3. Numerics: error bounds

\[\|v_h\|^2_h := \sum_{K \in T_h} \left[|v_h|^2_{H^2(K)} + 2\lambda |v_h|^2_{H^1(K)} + \lambda^2 \|v_h\|^2_{L^2(K)} \right] + J_h(v_h, v_h). \]

Theorem (High-order convergence rates)

(Under previous assumptions & standard assumptions for DG meshes...)

Assume that \(u \in H^s(\Omega; T_h) \), with \(s_K > 5/2 \) for all \(K \in T_h \).

\[\|u - u_h\|^2_h \lesssim \sum_{K \in T_h} \left[\frac{h^{t_K - 2}_K}{p^{s_K - 5/2}_K} \|u\|_{H^{s_K}(K)} \right]^2, \]

where \(t_K = \min(p_K + 1, s_K) \) for each \(K \in T_h \).

Simplified form:

\[\|u - u_h\|_h \lesssim \frac{h^{\min(s,p+1)-2}}{p^{s-5/2}} \|u\|_{H^s(\Omega)}. \]

- Optimal in \(h \), half-order subopt. in \(p \)
- High-order convergence rates.
- Higher efficiency on well-chosen meshes and \(hp \)-refinement.
3. Numerics: error bounds

If u has only minimal regularity, then we have the following quasi-optimal approximation property with respect to the H^2-conforming subspace:

Theorem (Minimal regularity error bound)

Under previous assumptions...
Let $u \in H^2(\Omega) \cap H^1_0(\Omega)$ be the solution of (Elliptic HJB). Then

$$\|u - u_h\|_h \leq \inf_{z_h \in V_{h,p} \cap H^2(\Omega) \cap H^1_0(\Omega)} \|u - z_h\|_h.$$

Note however that DG method requires only quadratic polynomials, whereas H^2-conforming methods may require higher (e.g. Argyris elements require quintic polynomials).
3. Numerics: extensions to parabolic problems

S. & Süli, Num. Math. 2016: extension to parabolic HJB equations

- Generalisation of the Cordes condition and the PDE theory: existence and uniqueness of the strong solution
 \[u \in L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \cap H^1(0, T; L^2(\Omega)). \]

- Numerical scheme: \(hp-\tau q \)-version space-time DGFEM using tensor product of \(V_{h,p} \) with piecewise polynomials in time.

- Stability, consistency and convergence rates that are:
 - \(h \)-optimal,
 - \(p \)-suboptimal by \(p^{3/2} \),
 - \(\tau \)-optimal,
 - \(q \)-optimal.

- Exponential convergence rates under \(hp-\tau q \) refinement verified experimentally.
3. Numerics: experiment 1: h-refinement

Experiment 1: Test of high order convergence rates under h-refinement, fixed p.

Example (Control of correlated diffusions)

$$a^\alpha := \frac{1}{2} R^\top \begin{pmatrix} 1 + \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} R$$

$$\alpha := (\theta, R) \in [0, \frac{\pi}{3}] \times \text{SO}(2) =: \Lambda.$$

Remark: a^α becomes increasingly anisotropic as $\theta \to \pi/3$; rotation matrices $R \in \text{SO}(2)$ prevent monotone schemes from aligning the grid with the anisotropy.
Example (Control of correlated diffusions)

Uniform h-refinement on smooth solution $u(x, y) = \exp(xy) \sin(\pi x) \sin(\pi y)$:
3. Numerics: experiment 2: \textit{hp}-refinement

Experiment 2: \textit{test of exponential convergence rates under \textit{hp}-refinement}

Example (Strong anisotropy + boundary layer)
Let \(\Omega = (0, 1)^2 \), \(b^\alpha \equiv (0, 1) \), \(c^\alpha \equiv 10 \) and define

\[
a^\alpha := \alpha^\top \begin{pmatrix} 20 & 1 \\ 1 & 0.1 \end{pmatrix} \alpha, \quad \alpha \in \Lambda := \text{SO}(2), \quad \lambda = \frac{1}{2}.
\]

(Cordes$_1$) holds with \(\varepsilon \approx 0.0024 \) and \(\lambda = 1/2 \). Choose solution:

\[
u(x, y) = (2x - 1) \left(e^{1-|2x-1|} - 1 \right) \left(y + \frac{1 - e^{y/\delta}}{e^{1/\delta} - 1} \right), \quad \delta := 0.005 = O(\varepsilon)
\]

- Near-degenerate and anisotropic diffusion.
- Sharp boundary layer.
- Non-smooth solution.
3. Numerics: experiment 2: \textit{hp}-refinement

Example (Strong anisotropy + boundary layer)

We use boundary layer adapted meshes with \textit{p}-refinement: $2 \leq p_K \leq 10$, from 100 to 1320 DoFs.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{boundary_layer_mesh.png}
\caption{Boundary layer adapted mesh.}
\end{figure}

Exponential rate: $\| u - u_h \|_h \lesssim \exp(-c^{3/\sqrt{\text{DoF}}})$.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{exponential_rate.png}
\caption{Broken H^2 norm}
\end{figure}
3. Numerics: Experiment 3: linearization and algebraic solvers

Solution of nonlinear equation by a superlinearly convergent semismooth Newton method. [S. & Süli, SINUM 2014, Sect. 8]
3. Numerics: experiment 3: linearization and algebraic solvers

Nonoverlapping domain decomposition preconditioners with GMRES: (all tolerances 10^{-6} in discrete H^2-type norm)

<table>
<thead>
<tr>
<th>DoF</th>
<th>h</th>
<th>Average GMRES iterations (Newton steps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Subdomains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H = 2h$ $H = 4h$ $H = 8h$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Subdomains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H = 2h$ $H = 4h$ $H = 8h$</td>
</tr>
<tr>
<td>144</td>
<td>1/4</td>
<td>14.3 (6) 18.8 (5) 26.8 (5)</td>
</tr>
<tr>
<td>576</td>
<td>1/8</td>
<td>15.2 (5) 18.8 (5) 26.8 (5)</td>
</tr>
<tr>
<td>2304</td>
<td>1/16</td>
<td>15.4 (5) 20.0 (5) 26.8 (5)</td>
</tr>
<tr>
<td>9216</td>
<td>1/32</td>
<td>16.3 (6) 19.7 (6) 29.5 (6)</td>
</tr>
<tr>
<td>36864</td>
<td>1/64</td>
<td>16.0 (6) 18.3 (6) 26.3 (6)</td>
</tr>
<tr>
<td>147456</td>
<td>1/128</td>
<td>16.3 (6) 18.3 (6) 23.0 (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
<th>$p = 4$</th>
<th>$p = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1/8</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>1/16</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1/32</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>1/64</td>
<td>17</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>
Example (Strongly anisotropic parabolic problem)
Let $\Omega = (0, 1)^2$, $I = (0, 1)$, $\Lambda = SO(2)$,

$$a^\alpha := \alpha \begin{pmatrix} 1 & 1/40 \\ 1/40 & 1/800 \end{pmatrix} \alpha^\top, \quad \alpha \in \Lambda.$$

For $\omega = 1$, Cords condition holds with $\varepsilon \approx 1.25 \times 10^{-3}$.
Solution $u = (1 - e^{-t}) \exp(xy) \sin(\pi x) \sin(\pi y)$.
Uniform refinement with $q = p - 1$, $h \approx \tau$.

Remark (Monotone FDM)
Consistency requires (at least) stencil width ≥ 20, with more than 1529 stencil points.
3. Numerics: experiment 4: Parabolic

\[\| u - u_h \|_h^n / \| u \|_h^n \]

<table>
<thead>
<tr>
<th>Mesh size (h \approx \tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/32)</td>
</tr>
<tr>
<td>(1/16)</td>
</tr>
<tr>
<td>(1/8)</td>
</tr>
<tr>
<td>(1/4)</td>
</tr>
<tr>
<td>(1/2)</td>
</tr>
</tbody>
</table>

\[\| u(T) - u_h(T) \|_{H^1(\Omega; T_h)} / \| u(T) \|_{H^1(\Omega; T_h)} \]

<table>
<thead>
<tr>
<th>Mesh size (h \approx \tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/32)</td>
</tr>
<tr>
<td>(1/16)</td>
</tr>
<tr>
<td>(1/8)</td>
</tr>
<tr>
<td>(1/4)</td>
</tr>
<tr>
<td>(1/2)</td>
</tr>
</tbody>
</table>

\[\| v \|_h^2 := \sum_{n=1}^{N} \int_{I_n} \sum_{K \in T_h} \left[\omega^2 \| \partial_t v \|_{L^2(K)}^2 + \| v \|_{H^2(K)}^2 \right] dt. \]
Summary and outlook

Is it possible to have stable, consistent and convergent methods for fully nonlinear PDEs without discrete maximum principles?

- For equations with Cordes coefficients as presented here
 - Consistency & Stability of non-conforming discretisations
 - Convergence rates for sufficiently regular solutions
 - Non-structured meshes, varying polynomial degrees, etc.
References

Linear nondivergence form PDE: *Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients*,

Elliptic HJB: *Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients*,

Parabolic HJB: *Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients*,

Solvers: *Nonoverlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Approximations of Hamilton–Jacobi–Bellman Equations*,

Thank you!