Reconstruction de phase pour la transformée en ondelettes

Irène Waldspurger
CEREMADE, Université Paris Dauphine
(en collaboration avec Stéphane Mallat)

19 mai 2017
Séminaire du LJLL
Audio processing

Raw representation of a signal:

\[f : \mathbb{R} \to \mathbb{R}. \]

A priori difficult to analyze.

We use the \textbf{wavelet transform}

\[Wf : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{C}. \]

But we keep only the \textbf{modulus}:

\[|W|f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^+. \]
The scalogram has two desirable properties [Risset and Wessel, 1999; Balan et al., 2006]

Stability to unaudible transformations

Two signals that are identical to the human ear have very similar scalograms.

Discriminability

Two signals that sound different have different scalograms.

Theoretical analysis of these properties?
We consider the **inverse problem**:

To what extent is it possible to reconstruct a signal from its scalogram?

This is a **phase retrieval problem**.

Inverting the wavelet transform is easy, but we have only the modulus. We first need to recover the phase.
Motivations

- Understand the theoretical properties of the scalogram.
- Some audio processing tasks require to reconstruct a signal from the modified scalogram of another signal. [Virtanen, 2007]
- It adds an original item to the family of phase retrieval problems whose properties we understand.
Main questions

Theoretical aspects

- Uniqueness:
 Is the signal uniquely determined from its scalogram?

- Stability to noise:
 If the scalogram is only approximately known, what information does it give on the signal?

Algorithmical aspects

- Design an algorithm that is both accurate and fast.
Summary

1. Definitions; presentation of phase retrieval problems
2. Reconstruction from the scalogram: theoretical aspects
 ▶ Uniqueness
 ▶ No « strong » stability, but a « local » stability
3. Reconstruction from the scalogram: algorithms
Definition of the wavelet transform

Wavelet: $\psi \in L^1 \cap L^2(\mathbb{R})$ such that $\int_{\mathbb{R}} \psi(t) dt = 0$

\[
\forall j \in \mathbb{Z} \quad \psi_j(t) = 2^{-j} \psi(2^{-j} t) \\
\iff \quad \hat{\psi}_j(\omega) = \hat{\psi}(2^j \omega)
\]
Definition of the wavelet transform

Wavelet: $\psi \in L^1 \cap L^2(\mathbb{R})$ such that $\int_{\mathbb{R}} \psi(t) dt = 0$

$\forall j \in \mathbb{Z} \quad \psi_j(t) = 2^{-j} \psi(2^{-j}t)$

$\iff \hat{\psi}_j(\omega) = \hat{\psi}(2^j \omega)$

Wavelet transform: $W : f \in L^2(\mathbb{R}) \rightarrow \{ f \ast \psi_j \}_{j \in \mathbb{Z}}$
Phase retrieval problems

Example

The $f \ast \psi_j$ are complex-valued. Only real parts are displayed.
Phase retrieval problems

Example

\[|W| f = \{|f \ast \psi_j|\} \]

The \(f \) are complex-valued. Only real parts are displayed.

Scalogram = modulus of the wavelet transform
Reconstruct f from $|W|f = \{|f \ast \psi_j|\}_{j \in \mathbb{Z}}$?

This is an example of a **phase retrieval problem**.
Reconstruct \(f \) from \(|W|f = \{|f * \psi_j|\}_{j \in \mathbb{Z}} \)?

This is an example of a \textbf{phase retrieval problem}.

A generic phase retrieval problem:

Reconstruct \(x \in V \) from \(\{|L_i(x)|\}_{i \in I} \)?

where:

\(\rightarrow \) \(V \) is a known complex vector space;

\(\rightarrow \) \(\{L_i\}_{i \in I} \) is a fixed set of linear forms on \(V \).

Reconstruction \textbf{up to a global phase}:

\(x \sim ux \) if \(|u| = 1 \).
Main questions

Reconstruct $x \in V$ from $\{ |L_i(x)| \}_{i \in I}$?

- **Uniqueness**

 $$(\forall i, |L_i(x)| = |L_i(y)|) \implies (x = y) \quad ?$$

- **Stability**

 $$(\forall i, |L_i(x)| \approx |L_i(y)|) \implies (x \approx y) \quad ?$$

- **Algorithm** ?
Random linear forms

When the L_i are randomly chosen:
- uniqueness and stability;
- polynomial algorithm.

[Balan et al., 2006; Candès et al., 2013]

Deterministic linear forms

« Built on purpose » linear forms
[Balan et al., 2009; Bodmann and Hammen, 2014]

« Physical » linear forms
Often more difficult to analyze; problems tend to be ill-posed.
The wavelet transform is one of the few cases that can be precisely analyzed, at least for a specific choice of wavelets.
The wavelet transform is one of the few cases that can be precisely analyzed, at least for a specific choice of wavelets.

Overview

- **Uniqueness**
- No "strong" stability
- Instabilities can be described
- Reconstruction algorithm

} for Cauchy wavelets

} for relatively general wavelets
Cauchy wavelets

\[\hat{\psi}(\omega) = \omega^p e^{-\omega} 1_{\omega \geq 0} \]

\((p > 0 : \text{arbitrary parameter})\)

These wavelets are \textit{analytical}: their Fourier transform is zero on \(\mathbb{R}^-\).

\[\Rightarrow \{ |f \ast \psi_j| \}_{j \in \mathbb{Z}} \text{ does not depend upon } \hat{f}(\omega) \text{ for } \omega \leq 0. \]
Theorem (Uniqueness)

Let $f, g \in L^2(\mathbb{R})$ be such that $\hat{f}(\omega) = \hat{g}(\omega) = 0$ if $\omega \leq 0$. We assume that, for any $j \in \mathbb{Z}$:

$$|f \ast \psi_j| = |g \ast \psi_j|.$$

Then there exists $\phi \in \mathbb{R}$ such that:

$$f = ge^{i\phi}$$
Theorem (Uniqueness)

Let $f, g \in L^2(\mathbb{R})$ be such that $\hat{f}(\omega) = \hat{g}(\omega) = 0$ if $\omega \leq 0$. We assume that, for any $j \in \mathbb{Z}$:

$$|f \ast \psi_j| = |g \ast \psi_j|.$$

Then there exists $\phi \in \mathbb{R}$ such that:

$$f = ge^{i\phi}$$

Remark: A similar result holds for real-valued functions (instead of functions with no negative frequencies).
Idea of proof in a simpler case

Simplification
- \(\hat{f}(\omega) \) and \(\hat{g}(\omega) \) converge to non-zero limits when \(\omega \to 0^+ \)

Key property of Cauchy wavelets

\[
\forall j \in \mathbb{Z}, \forall x \in \mathbb{R} \quad f \ast \psi_j(x) = F(x + i2^j)
\]

where \(F \) is the holomorphic extension of \(f^{(p)} \) to the complex upper half plane.
Knowledge of $|f \ast \psi_j|$ for all j

\iff Knowledge of $|F|$ on a set of horizontal lines of \mathbb{C}

$\mathbb{R} + i2^2$

$\mathbb{R} + i2^1$

$\mathbb{R} + i2^0$

\cdots

\mathbb{R}

Reformulation of the problem: can we determine the holomorphic F from its modulus on these horizontal lines?
Lemma

From $|F(x + i2^j)|$, $\forall x \in \mathbb{R}$, we can compute:

$$\forall x \in \mathbb{R}, \quad F \left(x + i \frac{2.2^{j+1}}{3} \right) \overline{F \left(x + i \frac{2.2^j}{3} \right)}$$

Proof

$x \to |F(x + i2^j)|^2$ and $x \to F \left(x + i \frac{2.2^{j+1}}{3} \right) \overline{F \left(x + i \frac{2.2^j}{3} \right)}$ are the restriction of the same holomorphic function to two different horizontal lines.
Reconstruction algorithm

- From $|F(x + i2^j)|$, compute $F(x + i\frac{2.2^{j+1}}{3}) F(x + i\frac{2.2^j}{3})$
- For all $j \in \mathbb{Z}$, $k \in \mathbb{N}$, compute:

 \[
 \frac{F(x + i\frac{2.2^j}{3})}{F(x + i\frac{2.2^{j+2k}}{3})}
 \]

- Let k go to ∞ : $F(x + i\frac{2.2^{j+2k}}{3})$ goes to a constant.
- From $\left\{ F(x + i\frac{2.2^j}{3}) \right\}_{x \in \mathbb{R}, j \in \mathbb{Z}}$, reconstruct F.

Strong stability

\[\left(\| W \| f - W \| g \|_2 \leq \epsilon \right) \Rightarrow \left(\| f - g \|_2 \leq C \epsilon \right) \]

This does not hold: the reconstruction is not uniformly continuous.
Counter-example

\(\hat{f} \)

\(\hat{g} \)

\((f \ast \psi_j)\)

\((g \ast \psi_j)\)
Theoretical aspects

Counter-example

\[\hat{f}, \hat{g} \]

\[|f \ast \psi_j|, |g \ast \psi_j| \]
More general construction

- any $f \in L^2(\mathbb{R})$
- phases $(\phi_j(t))_{j \in \mathbb{Z}}$, varying slowly in both j and t

There exists $g \in L^2(\mathbb{R})$ such that:

$$\forall j \in \mathbb{Z} \quad f \ast \psi_j \approx e^{i\phi_j}(g \ast \psi_j)$$

$$\Rightarrow \forall j \in \mathbb{Z} \quad |f \ast \psi_j| \approx |g \ast \psi_j|$$

but we can have $f \not\approx g$.
For Cauchy wavelets, if $\forall j, |f \ast \psi_j| \approx |g \ast \psi_j|$, there exist slow-varying phases $(j, t) \rightarrow \phi_j(t)$ such that:

$$\forall j \in \mathbb{Z}, \quad f \ast \psi_j(t) \approx e^{i \phi_j} (g \ast \psi_j(t))$$

except in the neighborhood of points (j, t) where $f \ast \psi_j(t) \approx 0$.

Local stability

$$\{f \ast \psi_j\}_{j \in \mathbb{Z}} \approx \{g \ast \psi_j\}_{j \in \mathbb{Z}}$$

up to a global phase in the neighborhood of each (j, t).
Idea of proof
Study the stability of the reconstruction algorithm introduced for proving uniqueness.
Algorithmical aspects

Reconstruct $f \in L^2(\mathbb{R})$ from $\{|f \ast \psi_j|\}_{j \in \mathbb{Z}}$?

Wavelets are now generic, not Cauchy.

Algorithms for generic phase retrieval problems

- **Iterative methods**
 [Gerchberg and Saxton, 1972; Fienup, 1982; Candès et al., 2015]
 → relatively fast, but suffer from local minima

- **Convexification methods**
 [Candès et al., 2013; Waldspurger et al., 2015]
 → more precise, but too slow for large problems
For the wavelet transform, none yields satisfying results.

→ Specialized algorithm, that uses the structure of the wavelet transform to improve over existing algorithms.
First element: multiscale method

Reconstruct f from $\{|f \ast \psi_j|\}_{j \in \mathbb{Z}}$.

- We reconstruct f on the band $[0; 2^{-J}]$, for large J.
- Once f is reconstructed on the band $[0; 2^{-j}]$, we reconstruct the band $[2^{-j}; 2^{1-j}]$.

It works better than reconstructing all bands at once.
Second element : reformulation

Knowing $|f \star \psi_j|^2 \iff$ knowing $(f \star \psi_j^{(1)})(f \star \psi_j^{(2)})$,
where $(\psi_j^{(1)})_{j \in \mathbb{Z}}$ and $(\psi_j^{(2)})_{j \in \mathbb{Z}}$ are new families of wavelets.

$\psi_j^{(1)}$ has a lower characteristic frequency than ψ_j.
$\psi_j^{(2)}$ has a higher characteristic frequency than ψ_j.
Propagation of the phase information

- Once the $[0; 2^{-(j+1)}]$ frequency band has been reconstructed, we have an estimate of $f \ast \psi_j^{(1)}$.

- From $(f \ast \psi_j^{(1)})(f \ast \psi_j^{(2)})$, we get an estimate of $f \ast \psi_j^{(2)}$.

- We get an estimate of f on the frequency band $[0; 2^{-j}]$.

Additional advantage of the reformulation

It seems to reduce the number of local minima, when we directly apply a local optimization algorithm to it.
Numerical results

- Precise: the scalogram of the reconstructed signal is in general almost equal to the correct one.
- Complexity linear in the size of the signal, up to logarithmic factors.

Failures are more frequent when wavelet transforms are sparse.

Audio example
Morlet wavelets, 1% of noise
Numerical results

- Precise: the scalogram of the reconstructed signal is in general almost equal to the correct one.
- Complexity linear in the size of the signal, up to logarithmic factors.

Failures are more frequent when wavelet transforms are sparse.

Audio example
Morlet wavelets, 1% of noise
Original signal
Numerical results

- Precise: the scalogram of the reconstructed signal is in general almost equal to the correct one.
- Complexity linear in the size of the signal, up to logarithmic factors.

Failures are more frequent when wavelet transforms are sparse.

Audio example
Morlet wavelets, 1% of noise
Original signal
Difference between true and reconstructed modulus:

- Gerchberg-Saxton: 4.7%
- our algorithm: 0.6%
Numerical results

- Precise: the scalogram of the reconstructed signal is in general almost equal to the correct one.
- Complexity linear in the size of the signal, up to logarithmic factors.

Failures are more frequent when wavelet transforms are sparse.

Audio example
Morlet wavelets, 1% of noise
Original signal
Difference between true and reconstructed modulus:

- Gerchberg-Saxton: 4.7%
- our algorithm: 0.6%
Numerical results

- Precise: the scalogram of the reconstructed signal is in general almost equal to the correct one.
- Complexity linear in the size of the signal, up to logarithmic factors.

Failures are more frequent when wavelet transforms are sparse.

Audio example

Morlet wavelets, 1% of noise

Original signal

Difference between true and reconstructed modulus:

- Gerchberg-Saxton: 4.7%
- our algorithm: 0.6%
The reconstruction is not **strongly stable**:

\[
\frac{\| |W| f - |W| f_{rec} \|_2}{\| |W| f \|_2} = 0.6\% \quad \text{but} \quad \frac{\| f - f_{rec} \|_2}{\| f \|_2} = 86\%
\]

but we do not hear the difference because all the perceptual content of the audio signal is encoded in the modulus.

We can empirically confirm our **local stability** result.
The phase difference varies slower than the modulus, and much slower in the zones where the wavelet transform has no very small values.
Question 1

Can this study be extended to a more sophisticated representation, the scattering transform?

\[f \]

\[|f \ast \psi_{J-2}| \quad |f \ast \psi_{J-1}| \quad |f \ast \psi_J| \]

\[\vdots \]

\[||f \ast \psi_J \ast \psi_{J-1}|| \quad ||f \ast \psi_J \ast \psi_J|| \]

\[\vdots \]

[Mallat, 2012]
Question 2

For “random” phase retrieval problems, there exist fast, simple, and provably correct algorithms.

For non-random problems, algorithms must usually be specifically designed, and have no convergence guarantees.

Can we understand the gap between the two categories?

