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State of art: incompressible flows - global weak solutions

Incompressible Navier-Stokes equations:
1933-34 –> J. Leray [1906–1998]

[INS ]
div u = 0,

∂tu + div(u⊗ u)− ν∆u +∇Π1 = 0,

Non-homogeneous incompressible Navier-Stokes equations :

[NHINS ]

div u = 0,
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− 2 div(µ(%)D(u)) +∇Π2 = 0

where D(u) = (∇u + t∇u)/2.
1974 –> A. Kazhikhov [1947–2005]:

0 < C ≤ ρ0 ≤ C−1 < +∞, µ(s) = µ = cte

1990 –> J. Simon [1947–..]: ρ0 may vanish with µ(s) = µ = cte
1993 –> E. Fernández-Cara [1957–..], F. Guillén:

ρ0 may vanish with µ(s) ≥ C > 0
1998 –> P.–L. Lions [1956–..]: see the full details.

See for instance: E. Fernández-Cara,
Discrete & Continuous Dynamical Systems - Series S (2012), 1021-1090



State of art: compressible flows - global weak solutions

What was known until 2015 on global weak solutions with constant viscosities?
Monotonicity assumption on the pressure law

Barotropic case:

[CNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− µ∆u − (λ+ µ)∇divu +∇P(%) = 0,

with a given law s 7→ P(s), µ > 0 and λ+ 2µ/d > 0. We assume Ω = Πd

(periodic boundary conditions) and ρ|t=0 = ρ0, ρu|t=0 = m0.

The case P(s) = a sγ with a > 0:
I P.–L. Lions (1993–1998): γ ≥ 3d/(d + 2)

I E. Feireisl (2001) with co-authors: γ > d/2
I Note the recent work: P. Plotnikov-W. Weigant (2015): d = 2 and γ = 1

Some important non-monotone cases
I E. Feireisl (2002)
I B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskarba (2004)

Hypothesis on P with P ′(ρ) ≥ C−1%γ−1 − C for all % ∈ [0,+∞).



What should the viscous term be?
I Anisotropic viscosities : See work D.B., P.–E. Jabin.
I Density dependent viscosities : See work D. B., B. Desjardins.

What should the pressure law be?

I Thermodynamically the stability of the equilibrium
is directly connected to the monotonicity of p

I Monotone laws are also required for hyperbolicity
I However, many physical models have non-monotone pressure
I Its is not clear why a thermodynamical assumption should control

the stability of solutions over bounded times
I Non monotone pressure laws: See work D.B., P.–E. Jabin.

Let us explain the steps in the previous proofs with monotone pressure:
Non-trivial extension to the multi-dimensional in space case
of previous ideas introduced in the one-dimensional in space case by:
1986 –> D. Serre [1954–..], 1987 –> D. Hoff [??–...].



Case P(%) = a%γ (Estimates):

Energy estimates:
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Extra integrability on the density (Bogovskii operator):∫
Πd

%p =

∫
Πd

%γ+θ ≤ C < +∞

with
θ ≤ 2γ/d − 1.

This estimate is obtained testing the momentum equation by a test function
satisfying divϕ = ρθ − ρθ where · is the mean value. Using the energy estimate
to prove that the other quantities are controlled ( =⇒ constraint on θ).

Remark. We have % square integrable namely p ≥ 2 if γ ≥ 3d/(d + 2)
(P.–L. Lions constraint)



To prove global existence of weak solutions:

1) Stability: Assume there exists a sequence satisfying the energy estimates
uniformly and the equations in a weak sense. Is it possible to extract a
subsequence converging in some sense to a weak solution of the system and
satisfying the energy inequality?

2) Construction of approximate solutions: regularization, fixed point, Galerkin
method etc...

We focus on stability in this talk!

Compactness to pass to the limit in %u and %u ⊗ u mostly relies on

I compactness (negative sobolev space) on %kuk : Aubin-Lions-Simon Lemma
I convergence in norm to have compactness on

√
%
k
uk in L2((0,T )× Πd)

Quite similar to non-homogeneous incompressible Navier-Stokes equations.



The main difficulty in the proof: passage to the limit in %γk in weak formulation

How to get compactness on % in Lebesgue spaces?

The main step where the monotonicity is required (case γ ≥ 3d/(d + 2))
We use the fact that ρ ln ρ satisfies (renormalization technic due to Di-Perna
and Lions) the equation

∂t(% ln %) + div(% ln %u) + %divu = 0.

noticing that
s 7→ s ln s

is a strictly convex function and

s 7→ p(s)

is an increasing function.

Goal: show that
% ln % = % ln %

=⇒ commutation between stricly convex function and weak limit
=⇒ compactness in L1.



Renormalization of limit:

∂t(% ln %) + div(% ln %u) + %divu = 0.

Limit of Renormalization (denoting · the weak limit):

∂t(% ln %) + div(% ln %u) + %divu = 0.

This uses the property (effective flux property): weak compactness

ρ divu − P(ρ)ρ

λ+ 2µ
= ρ divu − P(ρ)ρ

λ+ 2µ

which gives

ρdivu−ρdivu =
P(ρ)ρ− P(ρ)ρ

λ+ 2µ
=⇒ appropriate sign due to monotonicity

=⇒ If no defect measure initially then compactness

For more general γ, use a clever troncature procedure: see E. Feireisl.

If defect measures present initially (multi-fluid systems):
See D. Serre, A.A. Amosov and A.A. Zlotnik , E. Feireisl, D.B. and M. Hillairet.



How to get the effective flux property?
To understand let us consider a simplified momentum equation

−µ∆un − (λ+ µ)∇divun +∇P(ρn) = Sn

that means suppress the total derivative in the compressible Navier-Stokes
momentum equation. Taking the divergence of the momentum equation we get

∆((λ+ 2µ)divun + P(ρn)) = div Sn

and therefore
(λ+ 2µ)divun + P(ρn)) = ∆−1 div Sn (1)

Passing to the limit and multiplying by ρ, we get

(λ+ 2µ)ρdivu + P(ρ)ρ = (∆−1 div S)ρ.

Multiplying Equation (1) by ρn and then passing to the limit, we get

(λ+ 2µ)ρdivu + P(ρ)ρ = (∆−1 div S)ρ.

Substracting the two last equations provides the conclusion.



In the anisotropic case

−µx∆xu − µz∂
2
z u − λ∇divu with µx 6= µz const

Then

%divu − %divu =
%Aµ%γ − %Aµ%γ

µx + λ

where Aµ = aµ(∆− (µx − µz)∂2
z )−1∂2

z with aµ = (µx − µz).

No a priori sign on the right-hand side: Non-local effects.

=⇒ difficulty: Possible mixing phenomena (small/large value of density)

See discussions in D.B., B. Desjardins, D. Gérard-Varet (2004).

Remark: Density dependent viscosities:
An other story D.B., B. Desjardins (2004): BD entropy is the starting point.
–> The viscosities vanishes when ρ vanishes.
–> Not covered actually for non-homogeneous incompressible NS eqs.



The first compressible Navier-Stokes system under consideration
(Non-monotone pressure)

D.B., P.-E. Jabin: arXiv:1507.04629 Submitted (2015).

Consider the following barotropic system in periodic box:

[CNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− µ∆u − (λ+ µ)∇divu +∇P(%) = 0,

with the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1%γ − C ≤ P(%) ≤ C%γ + C

and for all s ≥ 0, we only assume

|P ′(s)| ≤ s γ̃−1

for some γ̃ > 1.



Mathematical result

Theorem. Let (%0, u0) such that

E(%0, u0) =

∫
Πd

|m0|2

2%0
+ %0e(%0) < +∞

with e(s) =
∫ s

0 P(τ)/τ2dτ . Let P satisfying the previous hypothesis with

γ > (max (2, γ̃) + 1) d/(d + 2)

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark:
I If γ̃ = γ then γ > 3d/(d + 2).
I Truncated procedure as introduced by E. Feireisl could give γ > d/2.
I Work with pressure P(ρ, t, x) with appropriate (t, x) dependency

Importance for heat-conducting NS els
Importance of such pressure: biology, solar events........



The second compressible Navier-Stokes system under consideration
(Anisotropic viscosity)

D.B., P.-E. Jabin: arXiv:1507.04629 Submitted (2015).

Consider the following barotropic system in periodic box:

[ACNS ]
∂t%+ div(%u) = 0,

∂t (%u) + div(%u⊗ u)− div(A(t)∇u)− (λ+ µ)∇divu +∇P(%) = 0,

with the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1ργ−1 − C ≤ P ′(ρ) ≤ Cργ−1 + C

and a d × d matrix A = µId + δA(t) with time dependent smooth coefficient.

Remarks:
I Case usually encountered in geophysics: −νx∆xu − νz∂2

z u
(see Handbook R. Temam and M. Ziane).

I We can consider: −div(A(t)D(u)) + λ∇divu.
I Incompressible flows - weak sol.: anisotropy no problem if not degenerate.
I Compressible feature: Possible "density mixing"due to non-local operator.



Mathematical result

Theorem. Let (%0, u0) such that

E(%0, u0) =

∫
Πd

|m0|2

2%0
+ %0e(%0) < +∞

with e(s) =
∫ s

0 P(τ)/τ2dτ . Let P satisfying the monotonicity assumption
and assume that

γ >
d

2

[(
1 +

1
d

)
+

√
1 +

1
d2

]
.

There exists a universal constant C? > 0 such that if

‖δA‖∞ ≤ C?(2µ+ λ).

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark. Seems a straightforward perturbation result......
BUT it is trickier than the non-monotone pressure case due to non-local terms!!



Compactness on the density: An idea

Propagate some explicit regularity on ρ by computing∫
|ρ(t, x)− ρ(t, y)|

(|x − y |+ h)k
dx dy

for some k ≥ d .

However this corresponds to a Sobolev like regularity on ρ which cannot work.



The problem:

Weak solutions:
No Sobolev regularity propagation on % for compressible Navier-Stokes Eqs.

The frame:

I Weak regularity on the velocity field
I Vacuum state for the density.

The new idea:

I Introduce some appropriate weights wk in the quantity to be controlled
Precise the rate of convergence in terms of h.

I Derive appropriate properties on the weights
Go back to the definition without weights without too much lost in h.



The new idea

Propagate some explicit regularity on ρ by computing∫
|ρ(t, x)− ρ(t, y)|

(|x − y |+ h)k
(w(t, x) + w(t, y))dx dy

for some k ≥ d where the weight w solve the same transport equation

∂tw(t, x) + u(t, x) · ∇xw(t, x) = −λDxw(t, x)

for a well chosen penalization Dx and appropriate parameter λ (idem for
w(t, y)). Then explain that w(t, x) (and w(t, y)) cannot be too small, too
often to bound ∫

|ρ(t, x)− ρ(t, y)|
(|x − y |+ h)k

dx dy

in terms of h.



A compactness Lemma

Let %k bounded in Lp((0,T )× Πd) (with 1 ≤ p < +∞) and

∂t%k ∈ Lq(0,T ;W−1,q(Πd))

with q > 1. Let Kh positive, bounded functions, compactly suppported in Πd

s.t.
∀η > 0 small , sup

h

∫
Πd

1|x|≥ηKh(x) dx < +∞

and
‖Kh‖L1(Πd ) → +∞ when h→ +0

If

lim sup
k

sup
t∈[0,T ]

[ 1
‖Kh‖L1

∫
Πd

Kh(x−y)|%k(t, x)−%k(t, y)|p dxdy
]
→ 0, as h→ 0

Then %k compact in Lp((0,T )× Πd).



A compactness Lemma

Some references:
I J. Bourgain, H. Brézis, P. Mironescu: Functional spaces (2001)
I A.C. Ponce: Functional spaces (2004)
I F. Ben Belgacem, P.–E. Jabin: Nonlinear continuity equations (2013)

Remark: Let us denote
K h(x) =

Kh(x)

‖Kh‖L1
.

For 0 < h0 < 1, then

Kh0(x) =

∫ 1

h0

K h(x)
dh

h

where
Kh(x) =

1
(h + |x |)a for |x | ≤ 1/2

is eligible for the compactness lemma. Remark that

‖Kh0‖L1 ≈ | log h0|.



How it works on a more simple case?

See D.B., P.-E. Jabin: Guy Métivier’s Birthday - Springer-INdAM-Series (2017).

Let us consider the following system

[CS ]
∂t%+ div(%u) = 0,

−µ∆u + αu +∇P(%) = S

where µ, α > 0 with a given pressure law s 7→ P(s):
System encountered in biology, petroleum ingeneering for instance.

We assume the pressure P locally Lipschitz on [0,+∞), with P(0) = 0 and

C−1%γ − C ≤ P(%) ≤ C%γ + C

and for all s ≥ 0, we only assume

|P ′(s)| ≤ sγ−1

with γ > 1.



Result: Global existence of weak solutions !!

Energy bounds:

ργk ∈ L∞(0,T ; L1(Td)), uk ∈ L2(0,T ;H1(Td))

Extra integrability bounds

ρk ∈ Lp((0,T )× Td) with p > 2 becauseγ > 1.



We write g x for g(t, x) everywhere (idem g y ). One has

∂t |ρxk − ρyk |+ divx (ux
k |ρxk − ρyk |) + divy (uy

k |ρ
x
k − ρyk |)

= 1
2 (divxu

x
k + divyu

y
k ) |ρxk − ρyk | −

1
2 (divxu

x
k − divyu

y
k ) (ρxk + ρyk) sk ,

where sk = sign (ρxk − ρyk) and therefore

d

dt
R(t) =

∫
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∇Kh(x − y) · (ux

k − uy
k ) |ρxk − ρyk | (w

x + w y ) (2)

−
∫
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Kh(x − y) (divux
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k ) (ρxk + ρyk + (ρxk − ρyk) ) sk w
x

+2
∫
T2d

Kh(x − y) |ρxk − ρyk | (∂tw
x
k + ux

k · ∇xw
x + divxu

x
k w

x
k )

= A1 + A2 + A3

where
R(t) =

∫
T2d

Kh(x − y)|ρxk − ρyk |(w
x + w y ) dxdy .



Note that

A1 =

∫
T2d
∇Kh(x − y) · (ux

k − uy
k ) |ρyk − ρ

y
k | (w

x
k + w y

k ) (3)

≤ C

∫
T2d

Kh(x − y) (D|x−y|u
x
k + D|x−y|u

y
k ) |ρxk − ρyk |w

x
k ,

where we have used here the inequality

|u(x)− u(y)| ≤ C |x − y | (D|x−y|u
x
k + D|x−y|u

y
k ),

with the square function

Dhu
x
k =

1
h

∫
|z|≤h

|∇ux+z
k |

|z |d−1 dz .



∫ 1

h0

∫ t

0

A1

‖Kh‖1L
dh

h
≤ C

∫ 1

h0

∫ t

0

∫
Td

Kh(z)‖D|z|uk(·)− D|z|uk(·+ z)‖L2
dh

h

+C
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0
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k

where Mf is the maximal function defined as follows

Mf (x) = sup
r≤1

1
|B(0, r)

∫
B(0,r)

f (x + z) dz .

Use (translation property of the square function) that∫ 1

h0

∫ t

0
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Kh(z)‖D|z|uk(·)−D|z|uk(·+z)‖L2
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h
≤ C | log h0|1/2

∫ t

0
‖u(τ, .)‖H1

x
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Splitting in different parts the integral, we prove that

A2 ≤ C

∫
T2d

Kh(x − y) (1 + (ρxk)γ)) |ρxk − ρyk |w
x
k .

and we have

A3 =

∫
T2d

Kh(x − y) |ρxk − ρyk | (∂tw
x
k + ux

k · ∇xw
x + divxu

x
k w

x
k )

≤
∫
T2d

Kh(x − y) |ρxk − ρyk | (−λDx
k + divxu

x
k )w x

k .



Therefore we get

lim sup
k

[
1

| log h0|

∫
T2d
Kh0(x − y) |ρxk − ρyk | (w

x
k + w y

k )dx dy ]→ 0 as h0 → 0

where
∂t logwk + uk · ∇ logwk + λDk = 0, wk |t=0 = 1

with
Dk = M|∇uk |+ |divuk |+ (ρk)γ .



Remark. If transport equation considered with compactness properties on divuk
then in many respect: Equivalent of the method of G. Crippa and C. De Lellis
at the PDE level instead of ODE level: No weight needed.

See paper by F. Ben Belgacem and P.–E. Jabin:
Nice results on non-linear continuity Eq using the compactness Lemma.



We now have to control the weights so as to remove them. Namely we want to
prove that

lim sup
k

[
1

| log h0|

∫
T2d
Kh0(x − y) |ρxk − ρyk | dx dy ]→ 0 as h0 → 0

and not only

lim sup
k

[
1

| log h0|

∫
T2d
Kh0(x − y) |ρxk − ρyk | (w

x
k + w y

k )dx dy ]→ 0 as h0 → 0.



We have 0 ≤ wk ≤ 1 and

d

dt

∫
Td

ρk | logwk | ≤ λ
∫
Td

ρkDk < +∞

then (let t be fixed) split the integral into two parts using ωη = {x : wk ≤ η}:

{x ∈ ωc
η or y ∈ ωc

η}

and
{x ∈ ωη and y ∈ ωη}

with η chosen in terms of h0.

Show that we can get rid the weight without loosing to much decay in h0 to
continue to ensure the convergence to 0 as h0 go to zero.

One get the conclusion: Stability of sequence of global weak solutions.



Construction of approximate solutions:{
∂tρk + div(ρkuk) = 0,
−µ∆uk − (λ+ µ)∇divuk +∇Pε(ρk) = S ,

(4)

with the fixed source term S and the fixed initial data

ρk |t=0 = ρ0. (5)

The pressure Pε is defined as follows:

Pε(ρ) = p(ρ) if ρ ≤ c0,ε, Pε(ρ) = p(C0,ε) + C(ρ− c0,ε)β if ρ ≥ c0,ε,

with large enough β.

Global existence of weak solutions for fixed ε: See E. Feireisl (2002).

Global existence of weak solutions of the Stokes problem:
Let ε go to zero using the stability process to get the result



Merci pour votre attention !!


