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State of art: incompressible flows - global weak solutions

Incompressible Navier-Stokes equations:
1933-34 —> J. Leray [1906-1998]

divu =0,
[Nl Owu + div(u®@u) — vAu+ VI; =0,

Non-homogeneous incompressible Navier-Stokes equations :
divu =0,
[NHINS] 0o + div(pou) =0,
O (ou) + div(ou ® u) — 2div(u(o)D(u)) + VM2 =0
where D(u) = (Vu + 'Vu)/2.
1974 —> A. Kazhikhov [1947-2005]:
0<C<po<Ct< oo, u(s) = p = cte

1990 —> J. Simon [1947-..]: po may vanish with u(s) = u = cte
1993 —> E. Fernandez-Cara [1957-..], F. Guillén:

po may vanish with u(s) > C >0
1998 —> P.—L. Lions [1956-..]: see the full details.

See for instance: E. Fernandez-Cara,
Discrete & Continuous Dynamical Systems - Series S (2012), 1021-1090



State of art: compressible flows - global weak solutions

What was known until 2015 on global weak solutions with constant viscosities?
Monotonicity assumption on the pressure law

Barotropic case:

Oro + div(pu) =0,

[CNS] 8: (ou) + div(ou @ u) — pAu — (A + p)Vdivu + VP(o) = 0,

with a given law s+ P(s), u > 0 and A\ +2u/d > 0. We assume Q = N’
(periodic boundary conditions) and p|¢=o0 = po, puli=0 = mo.

The case P(s) = as” with a > 0:
» P—L. Lions (1993-1998): v > 3d/(d + 2)
> E. Feireisl (2001) with co-authors: v > d/2
> Note the recent work: P. Plotnikov-W. Weigant (2015): d =2 and y =1

Some important non-monotone cases

> E. Feireisl (2002)

> B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskarba (2004)
Hypothesis on P with P'(p) > C™1p"™* — C for all g € [0, +00).



What should the viscous term be?

» Anisotropic viscosities : See work D.B., P.—E. Jabin.

» Density dependent viscosities : See work D. B., B. Desjardins.
What should the pressure law be?

» Thermodynamically the stability of the equilibrium

is directly connected to the monotonicity of p
» Monotone laws are also required for hyperbolicity
» However, many physical models have non-monotone pressure

> Its is not clear why a thermodynamical assumption should control
the stability of solutions over bounded times

» Non monotone pressure laws: See work D.B., P.—E. Jabin.

Let us explain the steps in the previous proofs with monotone pressure:
Non-trivial extension to the multi-dimensional in space case

of previous ideas introduced in the one-dimensional in space case by:
1986 —> D. Serre [1954-..], 1987 —> D. Hoff [?7-...].



Case P(p) = ap” (Estimates):

Energy estimates:

sup (f/ olul? +7/ +u/ / |Vul® + /\+u/ / |divu|?
te[0,T] nd nd
1 [mo|? 1 /
< = — 4+ — 2
- 2/|-|d 00 ¥y—1 /e o

Extra integrability on the density (Bogovskii operator):

/ sz/ 0" < C< 400
nd nd

0 <2v/d—1.

with

This estimate is obtained testing the momentum equation by a test function
satisfying divp = p? — p? where ~ is the mean value. Using the energy estimate
to prove that the other quantities are controlled ( = constraint on 6).

Remark. We have g square integrable namely p > 2 if v > 3d/(d + 2)
(P.-L. Lions constraint)



To prove global existence of weak solutions:

1) Stability: Assume there exists a sequence satisfying the energy estimates
uniformly and the equations in a weak sense. Is it possible to extract a
subsequence converging in some sense to a weak solution of the system and
satisfying the energy inequality?

2) Construction of approximate solutions: regularization, fixed point, Galerkin
method etc...

We focus on stability in this talk!

Compactness to pass to the limit in pu and ou ® u mostly relies on

» compactness (negative sobolev space) on gxuk: Aubin-Lions-Simon Lemma

> convergence in norm to have compactness on /g, ux in L2((0, T) x N9)

Quite similar to non-homogeneous incompressible Navier-Stokes equations.



The main difficulty in the proof: passage to the limit in o] in weak formulation

How to get compactness on g in Lebesgue spaces?

The main step where the monotonicity is required (case v > 3d/(d + 2))
We use the fact that pln p satisfies (renormalization technic due to Di-Perna
and Lions) the equation

O:(oIn o) + div(eln gpu) + edivu = 0.

noticing that

s—slins
is a strictly convex function and
s — p(s)
is an increasing function.
Goal: show that
olnp=plnp

= commutation between stricly convex function and weak limit
= compactness in L.



Renormalization of limit:
O¢(on g) + div(oln gu) + odivu = 0.
Limit of Renormalization (denoting ~ the weak limit):
d:(eln @) + div(eln ou) + edivu = 0.
This uses the property (effective flux property): weak compactness

P(p)p
A+2u

P(p)p

divu —
pdivu N+ 2

= pdivu —

which gives

P(p)p — P(p)p

pdivu—pdivu = AT 2n

= appropriate sign due to monotonicity

= If no defect measure initially then compactness

For more general -y, use a clever troncature procedure: see E. Feireisl.

If defect measures present initially (multi-fluid systems):
See D. Serre, A.A. Amosov and A.A. Zlotnik , E. Feireisl, D.B. and M. Hillairet.



How to get the effective flux property?
To understand let us consider a simplified momentum equation

—pAuy — (A + p)Vdivu, + VP(pn) = S,

that means suppress the total derivative in the compressible Navier-Stokes
momentum equation. Taking the divergence of the momentum equation we get

A((XA+ 2u)divu, + P(pn)) = div S,

and therefore
(A +2u)divu, + P(pn)) = A7 div S, (1)

Passing to the limit and multiplying by p, we get
(A +2p)pdivu + Wp = (A71 div S)p.
Multiplying Equation (1) by p, and then passing to the limit, we get
(A + 2p)pdiva + P(p)p = (A" div S)p.

Substracting the two last equations provides the conclusion.



In the anisotropic case
— At — 12020 — AVdivu with py # p, const

Then
0AL0Y — 0AL07
Hx + A

where A, = a, (A — (ux — 12)02) 7202 with a, = (ux — pz).

odivu — odivu =

No a priori sign on the right-hand side: Non-local effects.
— difficulty: Possible mixing phenomena (small/large value of density)
See discussions in D.B., B. Desjardins, D. Gérard-Varet (2004).

Remark: Density dependent viscosities:

An other story D.B., B. Desjardins (2004): BD entropy is the starting point.
—> The viscosities vanishes when p vanishes.

—> Not covered actually for non-homogeneous incompressible NS egs.



The first compressible Navier-Stokes system under consideration
(Non-monotone pressure)

D.B., P.-E. Jabin: arXiv:1507.04629 Submitted (2015).

Consider the following barotropic system in periodic box:

O:0 + div(pu) =0,
[CNS] Ot (ou) + div(ou @ u) — pAu — (A + p)Vdivu + VP(g) = 0,
with the pressure P locally Lipschitz on [0, +00), with P(0) =0 and
Ch" = C<P(e)<Co +C
and for all s > 0, we only assume

IP'(s)| <s"*

for some 7 > 1.



Mathematical result

Theorem. Let (go, uo) such that

|m°[?
E(go0, uo) = 7o+ ooe(p0) < 00
nd (4]

with e(s) = [; P(7)/m?d7. Let P satisfying the previous hypothesis with
7> (max(2,7) + 1) d/(d +2)

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark:
> If ¥ = then v > 3d/(d + 2).
» Truncated procedure as introduced by E. Feireisl could give v > d/2.

» Work with pressure P(p, t,x) with appropriate (t,x) dependency
Importance for heat-conducting NS els
Importance of such pressure: biology, solar events........



The second compressible Navier-Stokes system under consideration
(Anisotropic viscosity)

D.B., P.-E. Jabin: arXiv:1507.04629 Submitted (2015).
Consider the following barotropic system in periodic box:

0o + div(pu) =0,

ACNST 9, (ou) + div(ou @ u) — div(A(6)74) — (A -+ p)Velivu + VP(g) = 0,

with the pressure P locally Lipschitz on [0, +00), with P(0) =0 and
C'p ™ —C<P(p<Cpt+C
and a d x d matrix A = pld + §A(t) with time dependent smooth coefficient.

Remarks:

» Case usually encountered in geophysics: —v Axu — v,0%u
(see Handbook R. Temam and M. Ziane).

> We can consider: —div(A(t)D(u)) + AVdivu.
» Incompressible flows - weak sol.: anisotropy no problem if not degenerate.

» Compressible feature: Possible "density mixing"due to non-local operator.



Mathematical result

Theorem. Let (o, uo) such that

|m°[?
E(0o0, o) = 5o+ 00e(o0) < +00
nd 0o

with e(s) = [; P(r)/7?dr. Let P satisfying the monotonicity assumption

and assume that
d 1 1
1> 5@ )1 ).

There exists a universal constant C, > 0 such that if
0A]lee < Cu(2p + A).

then there exists a global weak solution to the compressible Barotropic
Navier-Stokes equations (CNS).

Remark. Seems a straightforward perturbation result......
BUT it is trickier than the non-monotone pressure case due to non-local terms!!



Compactness on the density: An idea
Propagate some explicit regularity on p by computing

lo(t, x) = p(t,¥)] .
CEER

for some k > d.

However this corresponds to a Sobolev like regularity on p which cannot work.



The problem:

Weak solutions:
No Sobolev regularity propagation on ¢ for compressible Navier-Stokes Egs.

The frame:

» Weak regularity on the velocity field

» Vacuum state for the density.

The new idea:

> Introduce some appropriate weights wy in the quantity to be controlled
Precise the rate of convergence in terms of h.

» Derive appropriate properties on the weights
Go back to the definition without weights without too much lost in h.



The new idea
Propagate some explicit regularity on p by computing

lp(t, x) — p(t, y)

(x — y| + h)* (w(t,x) + w(t,y))dxdy

for some k > d where the weight w solve the same transport equation
Orw(t, x) + u(t,x) - Vew(t,x) = —=AD*w(t, x)

for a well chosen penalization D* and appropriate parameter A (idem for
w(t,y)). Then explain that w(t,x) (and w(t,y)) cannot be too small, too

often to bound ot ) ()]
p(t,x) — plt,y

s =l dxd

(x—y[+he &Y

in terms of h.



A compactness Lemma

Let gk bounded in LP((0, T) x M%) (with 1 < p < +00) and
deox € L9(0, T, WH9(N%))

with ¢ > 1. Let K}, positive, bounded functions, compactly suppported in ¢
s.t.

Vn > 0 small , sup/ Lixzn Kn(x) dx < 400
h nd
and
| Knll 2 (nay — 400 when h — +0
If
limsup sup [#/ Kn(x—y)|ok(t, x)—ok(t, ¥)|” dxdy] — 0, ash—0
k te[0,T] HKhHL1 nd

Then gk compact in LP((0, T) x N%).



A compactness Lemma

Some references:
» J. Bourgain, H. Brézis, P. Mironescu: Functional spaces (2001)
» A.C. Ponce: Functional spaces (2004)
» F. Ben Belgacem, P.—E. Jabin: Nonlinear continuity equations (2013)

Remark: Let us denote
7 oy Kn(x)

"0 = o

For 0 < ho < 1, then
1 dh
Kro() = [ K0S
ho
where

1
= —_— <
Kir(x) CERTE for |x] <1/2

is eligible for the compactness lemma. Remark that

1Ko [l 2 = | log ho-



How it works on a more simple case?

See D.B., P.-E. Jabin: Guy Métivier's Birthday - Springer-INdAM-Series (2017).

Let us consider the following system

0o + div(ou) =0,

3] —pAu+au+VP(o)=S

where i, « > 0 with a given pressure law s — P(s):
System encountered in biology, petroleum ingeneering for instance.

We assume the pressure P locally Lipschitz on [0, +00), with P(0) = 0 and
C " —C<P(e)<Co"+C
and for all s > 0, we only assume
IP'(s)| <5771

with v > 1.



Result: Global existence of weak solutions !!

Energy bounds:

pl € L0, T; LX(T9), e 30, T; H(T?))

Extra integrability bounds

px € LP((0, T) x T9) with p > 2 becausey > 1.



We write g~ for g(t, x) everywhere (idem g”). One has

Dulpf — | + divie (45 1 — 1) + dlivy (|0 — p2)
= 3 (divewg + divyu]) [pk — pil — 5 (diveu — divyuy) (o + o)) sk,

where s, = sign (px — p}) and therefore
d X X X
GRO= [ VK- y) (@ = a) Ik ol (v W) @
dt T2d
= [ Kolx = ) (v = diva) (5 + 6+ (6%~ ) sew”
T
+2/ Ki(x = y) |k — P4 (Bewid + uk - Vaew™ + divieuy wy)
T2d

= Ar + Az + Az

where
R(E) = [ Ko=)l — pLl(w + w) dcdy.
T



Note that
fo= [ VK= ) (= ) 16 (i )
=¢ /Jer Ki(x = ¥) (Djx—y i + Dpyju) ok = pilwics
where we have used here the inequality

lu(x) = u(y)| < Clx =y (Dpy i + Dix—y ug),

with the square function

1 ‘VUX+Z|
Dhuy = = / k 1 dz.
h Jiz1<n |z|9=2



1 1 t o dh
// h SC/// Kn(2)[| Dy uk(-) = Dpzju(- + 2) |2 -
ho Jo IIKa ho Jo J1d h
t
+c// Ko (x = )MV |6 — ol wi
0 TZd

where Mf is the maximal function defined as follows

Mf(x) =sup =———

f(x+ z)dz
9 50,7 /B(o,,) (+2)

Use (translation property of the square function) that

1 t t
dh
/// Kn(2) || Djzyui(-) =Dy e (- +2)l] 12 = - SCIIoghol”z/ (T, mz d7
ho JO Jmd 0



Splitting in different parts the integral, we prove that
Aa < C [ K= y) @+ () )) Ik = L i
T
and we have

A= [ K= )i = ALl Qe+ i Vw4 v )
'Ezd

< /Zd Ki(x — y) Ipk — pL| (=AD§ + div,ug) wy.
T



Therefore we get
1 X X
lim sup[i/ Kho(x — ¥) 1Pk — Pl (Wi + w))dx dy] — 0 as ho — 0
k | Iog h0| T2d

where
8t|Ong+uk-V|Ong+)\Dk:0, Wk|t:0:1
with
Dy = M|Vui| + |divue| + (px)”-



Remark. If transport equation considered with compactness properties on divug
then in many respect: Equivalent of the method of G. Crippa and C. De Lellis
at the PDE level instead of ODE level: No weight needed.

See paper by F. Ben Belgacem and P.—E. Jabin:
Nice results on non-linear continuity Eq using the compactness Lemma.



We now have to control the weights so as to remove them. Namely we want to
prove that

1
lim sup[i/ Kho(x — y) |pk — pl| dxdy] — 0 as hg — 0
X |log ho| J12d

and not only

1
lim sup[if Kho(x = ¥) ok — P (Wi + w)dx dy] — 0 as hop — 0.
P | log ho| Jy2d



We have 0 < wy <1 and

pi| log wi| < A/ pkDi < +00
dt Td Td

then (let t be fixed) split the integral into two parts using wy, = {x : wx < n}:
{x €wyoryecuw,}

and
{x € wy and y € wy}

with n chosen in terms of ho.

Show that we can get rid the weight without loosing to much decay in ho to
continue to ensure the convergence to 0 as hg go to zero.

One get the conclusion: Stability of sequence of global weak solutions.



Construction of approximate solutions:

Oepi + div(prui) = 0, (4)
—pAue — (A + p)Vdivue + VPe(pk) = S,

with the fixed source term S and the fixed initial data
Prlt=0 = PO- (5)
The pressure P. is defined as follows:
P-(p) = p(p) if p< coe,  P(p) =p(Coe) + Clp— o)’ if p> co,
with large enough 5.
Global existence of weak solutions for fixed e: See E. Feireis| (2002).

Global existence of weak solutions of the Stokes problem:
Let € go to zero using the stability process to get the result



Merci pour votre attention !!



