Singular limits for models of selection and mutation with heavy-tailed mutation distribution

Sepideh Mirrahimi

CNRS, Institut de mathématiques de Toulouse

50 ans du LJLL, Novembre 2019
Darwinian evolution of phenotypically structured populations under large mutation jumps

Mechanisms that we take into account:
- asexual reproduction: offsprings arise from a single organism
- heredity: transmission of the ancestral trait to the offsprings
- mutations: generates variability in the trait values
- competition leading to selection: individuals with better ability will spread through the population over time

Objective: to describe the dynamics of the trait density of the population while the mutations distribution has heavy tails
A fractional selection-mutation equation

We are interested in an asymptotic description of

\[
\begin{cases}
\partial_t n + (-\Delta)^\alpha n = n R(x, \rho(t)), & (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d \\
n(t = 0, \cdot) = n^0(\cdot), & \rho(t) = \int_{\mathbb{R}^d} n(t, x) \, dx,
\end{cases}
\]

with \(0 < \alpha < 1\) and

\[
(-\Delta)^\alpha n(t, x) = \text{p.v.} \int_{\mathbb{R}^d} (n(t, x) - n(t, x + h)) \frac{dh}{|h|^{d+2\alpha}}.
\]

- \(x \in \mathbb{R}^d\): phenotypical trait
- \(n(t, x)\): density of trait \(x\)
- \(\rho(t)\): total population size
- \(R(x, \rho)\): growth rate
- \((-\Delta)^\alpha n\): mutation term
A fractional selection-mutation equation

We are interested in an asymptotic description of

\[
\begin{aligned}
\partial_t n + (-\Delta)^\alpha n &= n R(x, \rho(t)), \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d \\
n(t = 0, \cdot) &= n^0(\cdot), \quad \rho(t) = \int_{\mathbb{R}^d} n(t, x) dx,
\end{aligned}
\]

with \(0 < \alpha < 1\) and

\[
(-\Delta)^\alpha n(t, x) = \text{p.v.} \int_{\mathbb{R}^d} (n(t, x) - n(t, x + h)) \frac{dh}{|h|^{d+2\alpha}}.
\]

- \(x \in \mathbb{R}^d\): phenotypical trait
- \(n(t, x)\): density of trait \(x\)
- \(\rho(t)\): total population size
- \(R(x, \rho)\): growth rate
- \((-\Delta)^\alpha n\): mutation term

Fractional laplacian: large mutation jumps with high rate

Derivation of the model: Jourdain–Méléard–Woyczynski (JMB-2012)
The choice of the growth rate

- $-C_1 \leq \frac{\partial R}{\partial \rho}(x, \rho) \leq -C_2 < 0$

- $0 < R(x, 0) < C$

- $\| R(\cdot, \rho) \|_{W^{2,\infty}(\mathbb{R}^d)} < K_2$
What do we expect?

Dynamics of the population’s density n_ε with

$$R(x, \rho) = 1 + \exp\left(2 - \frac{x^2}{5}\right) - \rho$$

Classical diffusion:

Fractional diffusion:

Colors: isolines of the phenotypic density n_ε
Concentration phenomenon: a classical selection-mutation model

\[
\begin{aligned}
\varepsilon \frac{\partial}{\partial t} n_\varepsilon - \varepsilon^2 \Delta n_\varepsilon &= n_\varepsilon R(x, \rho_\varepsilon), \\
n_\varepsilon(\cdot, t = 0) &= n_\varepsilon^0(\cdot), \quad \rho_\varepsilon(t) = \int_{\mathbb{R}^d} n_\varepsilon(t, x) dx.
\end{aligned}
\]
Concentration phenomenon: a classical selection-mutation model

\[
\begin{align*}
\epsilon \frac{\partial}{\partial t} n_\epsilon - \epsilon^2 \Delta n_\epsilon &= n_\epsilon R(x, \rho_\epsilon), \\
n_\epsilon(\cdot, t = 0) &= n_0^\epsilon(\cdot), \quad \rho_\epsilon(t) = \int_{\mathbb{R}^d} n_\epsilon(t, x) dx.
\end{align*}
\]

\[
n_\epsilon(t, x) \xrightarrow{\epsilon \to 0} n(t, x) = \bar{\rho}(t) \delta(x - \bar{x}(t)).
\]

Dynamics of the dominant trait with:

\[R(x, \rho) = 1 + \exp\left(2 - \frac{x^2}{5}\right) - \rho\]

\[\epsilon = .01\]
How to rescale mutations to observe concentration?

In the case of a Laplace term or thin-tailed integral kernel:

\[t \rightarrow t/\epsilon, \quad h \rightarrow \epsilon h, \quad h: \text{mutation step.} \]

Does not work for thick-tailed integral kernels.
How to rescale mutations to observe concentration?

In the case of a Laplace term or thin-tailed integral kernel:

\[t \to t/\varepsilon, \quad h \to \varepsilon h, \quad h: \text{mutation step.} \]

Does not work for thick-tailed integral kernels.

Proposed rescaling for fractional diffusion:

\[t \to t/\varepsilon, \quad h = r\nu \to ((r + 1)\varepsilon - 1)\nu, \quad r = |h|, \quad \nu = \frac{h}{|h|}. \]
How to rescale mutations to observe concentration?

In the case of a Laplace term or thin-tailed integral kernel:

\[t \to t/\varepsilon, \quad h \to \varepsilon h, \quad h: \text{mutation step.} \]

Does not work for thick-tailed integral kernels.

Proposed rescaling for fractional diffusion:

\[t \to t/\varepsilon, \quad h = r\nu \to ((r + 1)^\varepsilon - 1)\nu, \quad r = |h|, \quad \nu = \frac{h}{|h|}. \]

Numerical resolution of the problem with this rescaling:

Dynamics of the dominant trait:

\[R(x, \rho) = 1 + \exp\left(2 - \frac{x^2}{5}\right) - \rho \]

\[\varepsilon = .01 \]
Some references on the asymptotic method based on Hamilton-Jacobi equations

- The study of propagation phenomena in reaction-diffusion equations: Freidlin, Evans, Souganidis, Barles,...
Some references on the asymptotic method based on Hamilton-Jacobi equations

- The study of **propagation phenomena** in reaction-diffusion equations: Freidlin, Evans, Souganidis, Barles,…

- In **evolutionary biology** (nonlocal models):
Some references on the asymptotic method based on Hamilton-Jacobi equations

- The study of **propagation phenomena** in reaction-diffusion equations: Freidlin, Evans, Souganidis, Barles,…

- In **evolutionary biology** (nonlocal models):

 A large deviation type result in a model with an integral kernel with exponential tails: Brandle–Chasseigne (2013)
Table of contents

1. Introduction

2. Where does this scaling come from?

3. Main results

4. Main elements of the proof of the convergence of u_ϵ
Table of contents

1 Introduction

2 Where does this scaling come from?

3 Main results

4 Main elements of the proof of the convergence of u_ε
Where does this scaling come from? A toy model

\begin{equation}
\begin{cases}
\partial_t n + (-\Delta)^\alpha n = n(1 - n), \\
n(0, x) = n_0(x), \quad n_0 \text{ compactly supported.}
\end{cases}
\end{equation}

As $t \to \infty$,
\begin{align*}
\{n(t, x) \to 0 \text{ in } A_\sigma = \{(t, x) \mid |x| \geq e^{\sigma t}\} \text{ if } \sigma > \frac{1}{d+2\alpha} \\
n(t, x) \to 1 \text{ in } B_\sigma = \{(t, x) \mid |x| \leq e^{\sigma t}\} \text{ if } \sigma < \frac{1}{d+2\alpha}
\end{align*}
Where does this scaling come from? A toy model

\[
\begin{align*}
\text{(KPP)} \\
\begin{cases}
\partial_t n + (-\Delta)^\alpha n = n(1-n), \\
n(0,x) = n_0(x), \quad n_0 \text{ compactly supported}.
\end{cases}
\end{align*}
\]

As \(t \to \infty \),

\[
\begin{align*}
\begin{cases}
n(t,x) \to 0 & \text{in } A_\sigma = \{(t,x) \mid |x| \geq e^{\sigma t}\} \text{ if } \sigma > \frac{1}{d+2\alpha} \\
n(t,x) \to 1 & \text{in } B_\sigma = \{(t,x) \mid |x| \leq e^{\sigma t}\} \text{ if } \sigma < \frac{1}{d+2\alpha}
\end{cases}
\end{align*}
\]

A **long-time/long-range** rescaling keeping \(A_\sigma \) and \(B_\sigma \) invariant:

\[
t \to t/\varepsilon \implies x \to |x|^{1/\varepsilon} \nu, \quad \nu = x/|x|, \quad n_\varepsilon(t,x) = n(t/\varepsilon, |x|^{1/\varepsilon} \nu)
\]

Theorem (Méléard–M, CPDE 2015)

As \(\varepsilon \to 0 \),

\[
\begin{align*}
\begin{cases}
n_\varepsilon \to 0 & \text{in } A_\sigma \quad \text{if } \sigma > \frac{1}{d+2\alpha} \\
n_\varepsilon \to 1 & \text{in } B_\sigma \quad \text{if } \sigma < \frac{1}{d+2\alpha}
\end{cases}
\end{align*}
\]
Why this rescaling does not depend on α?

- The ultimate speed of propagation is forced by the tails of the heat kernel: exponential, for the classical heat kernel, and algebraic, for the fractional heat kernel.
Where does this scaling come from?

Why this rescaling does not depend on α?

- The ultimate speed of propagation is forced by the tails of the heat kernel: exponential, for the classical heat kernel, and algebraic, for the fractional heat kernel.

Transition to constant speed of propagation as $\alpha \to 1$:

- Coulon-Roquejoffre (CPDE-2012), Fractional KPP with $\alpha < 1$:

The position of the front scales ultimately as $e^{\frac{t}{d+2\alpha}}$ for $t_{\alpha} < t$. At intermediate times, it scales as $2t^{1/\alpha}$. As $\alpha \to 1$, $t_{\alpha} \to +\infty$, and the front will move ultimately as $2t$.

An adapted rescaling for the selection-mutation model

The KPP rescaling $h = r\nu \to r^\epsilon\nu$ not relevant ($\nu = \frac{h}{|h|}$):
Mutation steps have to be reduced.
An adapted rescaling for the selection-mutation model

The KPP rescaling $h = r\nu \to r^\varepsilon\nu$ not relevant ($\nu = \frac{h}{|h|}$):
Mutation steps have to be reduced.

An adapted rescaling: $h = r\nu \to ((r + 1)^\varepsilon - 1)\nu$

Change of variable: $r + 1 = e^k$

$$\varepsilon \partial_t n_\varepsilon(t, x) = \int_0^\infty \int_{S_{d-1}} (n_\varepsilon(t, x + (e^k - 1)\nu) - n_\varepsilon(t, x)) \frac{e^k dS dk}{|e^k - 1|^{1+2\alpha}}$$

$$+ n_\varepsilon(t, x) R(x, \rho_\varepsilon(t)).$$
An adapted rescaling for the selection-mutation model

The KPP rescaling $h = r\nu \to r^\varepsilon \nu$ not relevant ($\nu = \frac{h}{|h|}$):
Mutation steps have to be reduced.

An adapted rescaling: $h = r\nu \to ((r + 1)^\varepsilon - 1)\nu$
Change of variable: $r + 1 = e^k$

$$
\varepsilon \partial_t n_\varepsilon(t, x) = \int_0^\infty \int_{S^d-1} \left(n_\varepsilon(t, x + (e^{\varepsilon k} - 1)\nu) - n_\varepsilon(t, x) \right) \frac{e^k dSd\kappa}{|e^k - 1|^{1+2\alpha}} \\
+ n_\varepsilon(t, x) R(x, \rho_\varepsilon(t)).$

• $(r + 1)^\varepsilon - 1 \approx \varepsilon \log(r + 1)$:
close to the classical rescaling for small r, slower growth for large r
• Mutation distribution has still algebraic tails but with large power
• The variance of the mutation distribution is of order $O(\varepsilon^2)$
Table of contents

1 Introduction

2 Where does this scaling come from?

3 Main results

4 Main elements of the proof of the convergence of u_ε
The Hamilton-Jacobi approach

Hopf-Cole transformation: \(n_\varepsilon = \frac{1}{(2\pi\varepsilon)^{d/2}} \exp \left(\frac{u_\varepsilon}{\varepsilon} \right). \)

The equation on \(u_\varepsilon \):

\[
\partial_t u_\varepsilon(t, x) = H_\varepsilon[u_\varepsilon] + R(x, \rho_\varepsilon(t)).
\]

\[
H_\varepsilon[u_\varepsilon] = \int_0^\infty \int_{S^{d-1}} \left(e^{\frac{u_\varepsilon(t, x + (e^k - 1)\nu) - u_\varepsilon(t, x)}{\varepsilon}} - 1 \right) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dSdk.
\]
The Hamilton-Jacobi approach

Hopf-Cole transformation: \(n_\varepsilon = \frac{1}{(2\pi \varepsilon)^{d/2}} \exp\left(\frac{u_\varepsilon}{\varepsilon}\right) \).

The equation on \(u_\varepsilon \):
\[
\partial_t u_\varepsilon(t, x) = H_\varepsilon[u_\varepsilon] + R(x, \rho_\varepsilon(t)).
\]

\[
H_\varepsilon[u_\varepsilon] = \int_0^\infty \int_{S^{d-1}} \left(e^\frac{u_\varepsilon(t, x) + (e^\varepsilon k - 1) \nu - u_\varepsilon(t, x)}{\varepsilon} - 1\right) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dS dk.
\]

We expect that
\[
H_\varepsilon[u_\varepsilon] \rightarrow H(D_x u)
\]

The Hamiltonian for \(\alpha = .5 \)
\[
H(D_x u) = \int_0^\infty \int_{S^{d-1}} \left(e^{kD_x u \cdot \nu} - 1\right) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dS dk
\]
Theorem (M, JMPA 2019)

As $\varepsilon \to 0$, along subsequences, $(\rho_{\varepsilon})_{\varepsilon}$ converges a.e. to $\rho \in BV_{\text{loc}}(\mathbb{R}^+)$ and $(u_{\varepsilon})_{\varepsilon}$ converges locally uniformly to $u \in C((0, \infty) \times \mathbb{R}^d)$, the minimal viscosity supersolution to

$$
\begin{aligned}
\partial_t u &= H(D_x u) + R(x, \rho), \\
\max_{x \in \mathbb{R}} u(t, x) &= 0, \\
u(0, x) &= u_0(x),
\end{aligned}
$$

satisfying for all $t > 0$ and $x, h \in \mathbb{R}^d$

$$
\|D_x u\|_{L^\infty((0, \infty) \times \mathbb{R}^d)} \leq 2\alpha, \quad u(t, x+h) - u(t, x) \leq 2\alpha \log(1+|h|).
$$

Moreover, u is a viscosity subsolution of (1) in a weak sense.
Some remarks on the regularizing effect

\(H(D_x u) \)** blows up** when \(2\alpha \leq |D_x u| \)

This leads to the first regularity result:

\[
\| D_x u \|_{L^\infty((0,\infty) \times \mathbb{R}^d)} \leq 2\alpha.
\]
Some remarks on the regularizing effect

$H(D_x u)$ blows up when $2\alpha \leq |D_x u|$

This leads to the first regularity result:

$$\|D_x u\|_{L^\infty((0,\infty) \times \mathbb{R}^d)} \leq 2\alpha.$$

The second regularity result, which is stronger:

$$u(t, x + h) - u(t, x) \leq 2\alpha \log(1 + |h|)$$

is a consequence of the original problem with ε.

These properties do not hold necessarily at the initial time \Rightarrow strong regularizing effect
Is u in general a viscosity solution to the HJ equation?

This is not necessarily the case:

- We find a HJ equation of the above type, which has a solution that does not satisfy the logarithmic decay property.
Is u in general a viscosity solution to the HJ equation?

This is not necessarily the case:

- We find a HJ equation of the above type, which has a solution that does not satisfy the logarithmic decay property.
- The viscosity solution to such HJ equation is unique.
Is u in general a viscosity solution to the HJ equation?

This is not necessarily the case:

- We find a HJ equation of the above type, which has a solution that does not satisfy the logarithmic decay property.

- The viscosity solution to such HJ equation is unique.

\[\implies\text{the logarithmic decay property is not an intrinsic property of such equation.}\] This indicates that u may not be a viscosity solution to the above HJ equation.
Is u in general a viscosity solution to the HJ equation?

Consider the following equation

$$\begin{cases}
 \partial_t u(t, x) - \int_0^\infty \left(e^k \partial_x u(t, x) + e^{-k} \partial_x u(t, x) - 2 \right) \frac{e^k \, dk}{|e^k - 1|^{1+2\alpha}} = a(t, x) \\
 u(0, x) = 0, \quad x \in \mathbb{R},
\end{cases}$$

with

$$a(t, x) = \frac{-C \sqrt{1 + x^2}}{(1 + t)^2} - \int_0^\infty \left(e^{\frac{Ct}{(1+t)\sqrt{1+x^2}}} k + e^{\frac{-Ct}{(1+t)\sqrt{1+x^2}}} k - 2 \right) \frac{e^k \, dk}{|e^k - 1|^{1+2\alpha}},$$

and $0 < C < 2\alpha$.
Is \(u \) in general a viscosity solution to the HJ equation?

Consider the following equation

\[
\begin{aligned}
\begin{cases}
\partial_t u(t,x) - \int_0^\infty \left(e^{k \partial_x u(t,x)} + e^{-k \partial_x u(t,x)} - 2 \right) \frac{e^k dk}{|e^k - 1|^{1+2\alpha}} = a(t,x) \\
u(0,x) = 0, \quad x \in \mathbb{R},
\end{cases}
\end{aligned}
\]

with

\[
a(t,x) = -\frac{C \sqrt{1 + x^2}}{(1 + t)^2} - \int_0^\infty \left(e^{\frac{C t x}{(1+t)\sqrt{1+x^2}}} k + e^{\frac{-C t x}{(1+t)\sqrt{1+x^2}}} k - 2 \right) \frac{e^k dk}{|e^k - 1|^{1+2\alpha}},
\]

and \(0 < C < 2\alpha \). One can verify that

\[
u(t,x) = -\frac{C t \sqrt{1 + x^2}}{1 + t},
\]

is a solution but \(u \) does not have logarithmic decay.
Concentration of the phenotypic density

The properties obtained for u are still enough to capture the concentration phenomenon:

Theorem (M, JMPA 2019)

Along subsequences as $\varepsilon \to 0$, $n_\varepsilon \rightharpoonup n$ in the measure sense, and

$$\text{supp } n(t, \cdot) \subset \{u(t, \cdot) = 0\} \subset \{R(\cdot, \rho(t)) = 0\}, \text{ for a.e. } t$$

In particular, if $x \in \mathbb{R}$ and R is monotonic with respect to x, then for a.e. t,

$$n(t, x) = \rho(t)\delta(x - \overline{x}(t)).$$
Where do the inclusion properties come from?

- \(\text{supp } n(t, \cdot) \subset \{ u(t, \cdot) = 0 \} \): From Hopf-Cole transformation:

\[
n_\varepsilon \approx \exp \left(\frac{u_\varepsilon}{\varepsilon} \right).
\]
Where do the inclusion properties come from?

- $\text{supp } n(t, \cdot) \subset \{ u(t, \cdot) = 0 \}$: From Hopf-Cole transformation:
 \[n_\varepsilon \approx \exp \left(\frac{u_\varepsilon}{\varepsilon} \right). \]

- $\{ u(t, \cdot) = 0 \} \subset \{ R(\cdot, \rho(t)) = 0 \}$
 \[u(t, \overline{x}) = 0 \quad \Rightarrow \quad (t, \overline{x}) \in \text{argmax } u \]
 \[\Rightarrow \quad \partial_t u(t, \overline{x}) = 0, \quad \nabla u(t, \overline{x}) = 0. \]

If u solution to HJ: $\partial_t u = H(D_x u) + R(x, \rho)$ then

\[R(\overline{x}, \rho(t)) = 0. \]

Still holds for the minimal viscosity supersolution.
Table of contents

1 Introduction

2 Where does this scaling come from?

3 Main results

4 Main elements of the proof of the convergence of u_ε
Main difficulties

The main difficulties to prove the convergence of \((u_\varepsilon)_\varepsilon\):

- The Hamiltonian can take infinite values.
- The limit is not in general a viscosity solution to the HJ equation.
- \(\rho\) is only BV and potentially discontinuous.
The main elements of the proof

Convergence of u_ε:

$$\partial_t u_\varepsilon(t, x) = H_\varepsilon[u_\varepsilon] + R(x, \rho_\varepsilon(t)).$$

$$H_\varepsilon[u_\varepsilon] = \int_0^\infty \int_{\nu \in S^{d-1}} \left(e^{\frac{u_\varepsilon(t, x + (e^k - 1)\nu) - u_\varepsilon(t, x)}{\varepsilon}} - 1 \right) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dS dk$$
The main elements of the proof

Convergence of u_ε:

$$\partial_t u_\varepsilon(t, x) = H_\varepsilon[u_\varepsilon] + R(x, \rho_\varepsilon(t)).$$

$$H_\varepsilon[u_\varepsilon] = \int_0^\infty \int_{\nu \in S^{d-1}} (e^{\frac{u_\varepsilon(t, x + (e^k - 1)\nu) - u_\varepsilon(t, x)}{\varepsilon}} - 1) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dSdk$$

This equation converges formally to the HJ equation. The following properties allow to obtain the convergence of $H_\varepsilon[u_\varepsilon]$:

$$\|D_x u_\varepsilon\|_{L^\infty(\mathbb{R} \times \mathbb{R}^+)} < 2\alpha, \quad u_\varepsilon(t, x + h) - u_\varepsilon(t, x) < 2\alpha \log(1 + |h|).$$
The main elements of the proof

Convergence of u_ε:

$$\partial_t u_\varepsilon(t, x) = H_\varepsilon[u_\varepsilon] + R(x, \rho_\varepsilon(t)).$$

$$H_\varepsilon[u_\varepsilon] = \int_0^\infty \int_{\nu \in S^{d-1}} (e^{\frac{u_\varepsilon(t, x + (e^\varepsilon k - 1)\nu) - u_\varepsilon(t, x)}{\varepsilon}} - 1) \frac{e^k}{|e^k - 1|^{1+2\alpha}} dS dk$$

This equation converges formally to the HJ equation.

The following properties allow to obtain the convergence of $H_\varepsilon[u_\varepsilon]$:

$$\|D_x u_\varepsilon\|_{L^\infty(\mathbb{R} \times \mathbb{R}^+)} < 2\alpha, \quad u_\varepsilon(t, x + h) - u_\varepsilon(t, x) < 2\alpha \log(1 + |h|).$$

We prove these properties (with non-strict inequalities) and the convergence of $(u_\varepsilon)_\varepsilon$ simultaneously.
The main elements of the proof

To prove the convergence, we use the semi relaxed limits:

$$
\overline{u}(t, x) = \limsup_{(s, y) \to (t, x)} u_\varepsilon(s, y), \quad u(t, x) = \liminf_{(s, y) \to (t, x)} u_\varepsilon(s, y).
$$
The main elements of the proof

To prove the convergence, we use the semi relaxed limits:

$$\bar{u}(t, x) = \limsup_{(s, y) \to (t, x)} u_\varepsilon(s, y), \quad u(t, x) = \liminf_{(s, y) \to (t, x)} u_\varepsilon(s, y).$$

The classical method:

- \(\bar{u} \) is a viscosity subsolution to the HJ equation.
- \(u \) is a viscosity supersolution to the HJ equation.
- A strong comparison principle in the class of discontinuous viscosity solutions:

 $$\bar{u} \leq u.$$

 and hence \(\bar{u} = u \) which implies that \((u_\varepsilon)_\varepsilon \) converges to \(u = \bar{u} = \underline{u} \).
The main elements of the proof

A difficulty in our case: the Hamiltonian takes infinite value

$\Rightarrow \bar{u}$ is not necessarily a viscosity subsolution.
The main elements of the proof

A difficulty in our case: the Hamiltonian takes infinite value
\[\Rightarrow \overline{u} \text{ is not necessarily a viscosity subsolution.} \]

What we do (the main elements):

- We prove that \(u \) is a viscosity supersolution to HJ.
The main elements of the proof

A difficulty in our case: the Hamiltonian takes infinite value

\[\Rightarrow \bar{u} \text{ is not necessarily a viscosity subsolution.} \]

What we do (the main elements):

- We prove that \(u \) is a viscosity supersolution to HJ.
- We show that \(u \) has all the nice properties that we need.
The main elements of the proof

A difficulty in our case: the Hamiltonian takes infinite value
⇒ \(\bar{u} \) is not necessarily a viscosity subsolution.

What we do (the main elements):

- We prove that \(u \) is a viscosity supersolution to HJ.
- We show that \(u \) has all the nice properties that we need.
- We modify and regularize it and use it as a test function for \(\bar{u} \) to obtain a contradiction with the fact that \(\max \bar{u} - u > 0 \). We conclude that \(\bar{u} = u \) which means that \((u_\varepsilon)_{\varepsilon} \) converges.
Thank you for your attention !